NAME: _

ANSWERS

FALL 2006 NU PUTNAM SELECTION TEST

Problem A1. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that f(x, y) + f(y, z) + f(z, x) = 0 for all real numbers x, y, and z. Prove that there exists a function $g : \mathbb{R} \to \mathbb{R}$ such that f(x, y) = g(x) - g(y) for all real numbers x and y.

- Answer: The function g(x) = f(x,0) works. Substituting (x, y, z) = (0,0,0) into the given functional equation yields f(0,0) = 0, whence substituting (x, y, z) = (x, 0, 0) yields f(x,0) + f(0,x) = 0. Finally, substituting (x, y, z) = (x, y, 0) yields f(x, y) = -f(y, 0) - f(0, x) = g(x) - g(y).

ANSWERS

NAME:

FALL 2006 NU PUTNAM SELECTION TEST

Problem A2. A convex polygon of n sides in the plane \mathbb{R}^2 can be divided into nonoverlapping triangles by non-intersecting line segments connecting pairs of vertices. Suppose that C_n is the number of such divisions, e.g., $C_3 = 1$, $C_4 = 2$, $C_5 = 5$ (see figure).

Show that it satisfies the recursive relation

$$C_n = \sum_{k=2}^{n-1} C_k C_{n-k+1} \,,$$

with the convention that $C_2 = 1$.

- Answer: Assume the given polygon has vertices $v_0, v_1, \ldots, v_{n-1}$, and let N_k be the number of divisions containing the triangle with vertices v_0, v_1, v_k $(k = 2, \ldots, n-1)$. To each side of that triangle we have polygons with vertices v_1, v_2, \ldots, v_k and $v_k, v_{k+1}, \ldots, v_{n-1}$ respectively. Each can be divided into C_k and C_{n-k+1} ways respectively, yielding $N_k = C_k C_{n-k+1}$ (note that this is true also for the special cases k = 2 and k = n-1 under the convention $C_2 = 1$). After adding for $k = 2, \ldots, n-1$ we get the desired result.

Wednesday, Oct 6th, 2010

ANSWERS

NAME: _____

FALL 2006 NU PUTNAM SELECTION TEST

Problem A3. Evaluate the sum

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{1^3 + 2^3 + \dots + n^3}} \, .$$

Hint: What is the closed form for the sum $1^3 + 2^3 + \cdots + n^3$?

- Answer: We have that
$$1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$
, hence

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{1^3 + 2^3 + \dots + n^3}} = \sum_{n=1}^{\infty} \frac{2}{n(n+1)} = 2\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 2.$$

ANSWERS

NAME: _

FALL 2006 NU PUTNAM SELECTION TEST

Problem A4. Let $p(x) = ax^2 + bx + c$ be a polynomials with real coefficients. Assume that for some real number λ , the values $p(\lambda)$, $p(\lambda + 1)$, and $p(\lambda + 2)$ are integers. Show that 2a, 2b, and 2c are also integers.

- Answer: By hypothesis we have

$$\begin{cases} a\lambda^{2} + b\lambda + c = u\\ a(\lambda+1)^{2} + b(\lambda+1) + c = v\\ a(\lambda+2)^{2} + b(\lambda+2) + c = w \end{cases}$$

where u, v, w are integers. Interpreting the above expression as a system of equations with unknowns a, b, c, and solving by Cramer's rule, we get

$$a = \frac{a'}{\det(M)}, \quad b = \frac{b'}{\det(M)}, \quad c = \frac{c'}{\det(M)},$$

where a', b', c' are integers, and det(M) is the determinant of the coefficient matrix

$$M = \begin{pmatrix} \lambda^2 & \lambda & 1\\ (\lambda+1)^2 & (\lambda+1) & 1\\ (\lambda+2)^2 & (\lambda+2) & 1 \end{pmatrix} \,.$$

M is a Vandermonde matrix, and its determinant is $det(M) = (\lambda - (\lambda + 1))(\lambda - (\lambda + 2))((\lambda + 1) - (\lambda + 2)) = -2$, so all the denominators in the expressions for a, b, c above are -2, and the desired result follows.

Wednesday, Oct 6th, 2010

ANSWERS

NAME: _

FALL 2006 NU PUTNAM SELECTION TEST

Problem A5. What is the limit

$$\lim_{n \to \infty} \int_0^\pi \left(\sin x \right)^n \, dx \, ?$$

- Answer: Given any $0 < \varepsilon < \pi/2$, let f_{ε} be the function

$$f_{\varepsilon}(x) = \begin{cases} 1 & \text{if } x \in \left[\frac{\pi}{2} - \varepsilon, \frac{\pi}{2} + \varepsilon\right],\\ \sin(\frac{\pi}{2} - \varepsilon) & \text{otherwise}. \end{cases}$$

Then, we have $0 \leq \sin x \leq f_{\varepsilon}(x)$ for every $x \in [0, \pi]$, and

$$0 < \int_0^\pi (\sin x)^n \, dx \le \int_0^\pi f_\varepsilon(x)^n \, dx =$$
$$\int_0^{\frac{\pi}{2}-\varepsilon} f_\varepsilon(x)^n \, dx + \int_{\frac{\pi}{2}-\varepsilon}^{\frac{\pi}{2}+\varepsilon} f_\varepsilon(x)^n \, dx + \int_{\frac{\pi}{2}+\varepsilon}^\pi f_\varepsilon(x)^n \, dx =$$
$$(\frac{\pi}{2}-\varepsilon)\{\sin(\frac{\pi}{2}-\varepsilon)\}^n + 2\varepsilon + (\frac{\pi}{2}-\varepsilon)\{\sin(\frac{\pi}{2}-\varepsilon)\}^n$$

Since $0 < \sin(\frac{\pi}{2} - \varepsilon) < 1$, the first and third term of the last expression tend to zero as $n \to \infty$, hence

$$0 \le \lim_{n \to \infty} \int_0^\pi (\sin x)^n \, dx \le 2\varepsilon \, .$$

Since that is true for arbitrary $\varepsilon \in (0, \pi/2)$, it follows that

$$\lim_{n \to \infty} \int_0^\pi (\sin x)^n \, dx = 0$$

Wednesday, Oct 6th, 2010

ANSWERS

NAME: _____

FALL 2006 NU PUTNAM SELECTION TEST

Problem A6. Let a_1, a_2, \ldots, a_n be positive numbers and b_1, b_2, \ldots, b_n be a permutation of this sequence. Show that

$$\frac{a_1}{b_1} + \frac{a_2}{b_2} + \dots + \frac{a_n}{b_n} \ge n.$$

- Answer: Using the Arithmetic Mean-Geometric Mean inequality we get:

$$\frac{1}{n} \left\{ \frac{a_1}{b_1} + \frac{a_2}{b_2} + \dots + \frac{a_n}{b_n} \right\} \ge \sqrt[n]{\frac{a_1}{b_1} \cdot \frac{a_2}{b_2} \cdots \frac{a_n}{b_n}} = 1.$$

From here the desired result follows.