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Problem A1. Let f : R2 → R be a function such that f(x, y) + f(y, z) + f(z, x) = 0
for all real numbers x, y, and z. Prove that there exists a function g : R → R such that
f(x, y) = g(x)− g(y) for all real numbers x and y.

- Answer: The function g(x) = f(x, 0) works. Substituting (x, y, z) = (0, 0, 0) into the
given functional equation yields f(0, 0) = 0, whence substituting (x, y, z) = (x, 0, 0) yields
f(x, 0) + f(0, x) = 0. Finally, substituting (x, y, z) = (x, y, 0) yields f(x, y) = −f(y, 0) −
f(0, x) = g(x)− g(y).
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Problem A2. A convex polygon of n sides in the plane R2 can be divided into non-
overlapping triangles by non-intersecting line segments connecting pairs of vertices. Suppose
that Cn is the number of such divisions, e.g., C3 = 1, C4 = 2, C5 = 5 (see figure).

Show that it satisfies the recursive relation

Cn =
n−1∑
k=2

CkCn−k+1 ,

with the convention that C2 = 1.

- Answer: Assume the given polygon has vertices v0, v1, . . . , vn−1, and let Nk be the number
of divisions containing the triangle with vertices v0, v1, vk (k = 2, . . . , n− 1). To each side of
that triangle we have polygons with vertices v1, v2, . . . , vk and vk, vk+1, . . . , vn−1 respectively.
Each can be divided into Ck and Cn−k+1 ways respectively, yielding Nk = CkCn−k+1 (note
that this is true also for the special cases k = 2 and k = n−1 under the convention C2 = 1).
After adding for k = 2, . . . , n− 1 we get the desired result.
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Problem A3. Evaluate the sum
∞∑

n=1

1√
13 + 23 + · · ·+ n3

.

Hint: What is the closed form for the sum 13 + 23 + · · ·+ n3?

- Answer: We have that 13 + 23 + · · ·+ n3 =
n2(n + 1)2

4
, hence

∞∑
n=1

1√
13 + 23 + · · ·+ n3

=
∞∑

n=1

2

n(n + 1)
= 2

∞∑
n=1

(
1

n
− 1

n + 1

)
= 2 .
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Problem A4. Let p(x) = ax2 + bx+ c be a polynomials with real coefficients. Assume that
for some real number λ, the values p(λ), p(λ + 1), and p(λ + 2) are integers. Show that 2a,
2b, and 2c are also integers.

- Answer: By hypothesis we have aλ2 + bλ + c = u
a(λ + 1)2 + b(λ + 1) + c = v
a(λ + 2)2 + b(λ + 2) + c = w

where u, v, w are integers. Interpreting the above expression as a system of equations with
unknowns a, b, c, and solving by Cramer’s rule, we get

a =
a′

det(M)
, b =

b′

det(M)
, c =

c′

det(M)
,

where a′, b′, c′ are integers, and det(M) is the determinant of the coefficient matrix

M =

 λ2 λ 1
(λ + 1)2 (λ + 1) 1
(λ + 2)2 (λ + 2) 1

 .

M is a Vandermonde matrix, and its determinant is det(M) = (λ−(λ+1))(λ−(λ+2))((λ+
1)− (λ + 2)) = −2, so all the denominators in the expressions for a, b, c above are −2, and
the desired result follows.
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Problem A5. What is the limit

lim
n→∞

∫ π

0

(sin x)n dx ?

- Answer: Given any 0 < ε < π/2, let fε be the function

fε(x) =

{
1 if x ∈ [π

2
− ε, π

2
+ ε] ,

sin(π
2
− ε) otherwise .

Then, we have 0 ≤ sin x ≤ fε(x) for every x ∈ [0, π], and

0 <

∫ π

0

(sin x)n dx ≤
∫ π

0

fε(x)n dx =∫ π
2
−ε

0

fε(x)n dx +

∫ π
2

+ε

π
2
−ε

fε(x)n dx +

∫ π

π
2

+ε

fε(x)n dx =

(π
2
− ε){sin(π

2
− ε)}n + 2ε + (π

2
− ε){sin(π

2
− ε)}n .

Since 0 < sin(π
2
− ε) < 1, the first and third term of the last expression tend to zero as

n →∞, hence

0 ≤ lim
n→∞

∫ π

0

(sin x)n dx ≤ 2ε .

Since that is true for arbitrary ε ∈ (0, π/2), it follows that

lim
n→∞

∫ π

0

(sin x)n dx = 0 .
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Problem A6. Let a1, a2, . . . , an be positive numbers and b1, b2, . . . , bn be a permutation of
this sequence. Show that

a1

b1

+
a2

b2

+ · · ·+ an

bn

≥ n.

- Answer: Using the Arithmetic Mean-Geometric Mean inequality we get:

1

n

{
a1

b1

+
a2

b2

+ · · ·+ an

bn

}
≥ n

√
a1

b1

· a2

b2

· · · an

bn

= 1 .

From here the desired result follows.


