ANSWERS

NAME: \qquad

FALL 2006 NU PUTNAM SELECTION TEST

Problem A1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that $f(x, y)+f(y, z)+f(z, x)=0$ for all real numbers x, y, and z. Prove that there exists a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y)=g(x)-g(y)$ for all real numbers x and y.

- Answer: The function $g(x)=f(x, 0)$ works. Substituting $(x, y, z)=(0,0,0)$ into the given functional equation yields $f(0,0)=0$, whence substituting $(x, y, z)=(x, 0,0)$ yields $f(x, 0)+f(0, x)=0$. Finally, substituting $(x, y, z)=(x, y, 0)$ yields $f(x, y)=-f(y, 0)-$ $f(0, x)=g(x)-g(y)$.

ANSWERS

NAME: \qquad

FALL 2006 NU PUTNAM SELECTION TEST

Problem A2. A convex polygon of n sides in the plane \mathbb{R}^{2} can be divided into nonoverlapping triangles by non-intersecting line segments connecting pairs of vertices. Suppose that C_{n} is the number of such divisions, e.g., $C_{3}=1, C_{4}=2, C_{5}=5$ (see figure).

Show that it satisfies the recursive relation

$$
C_{n}=\sum_{k=2}^{n-1} C_{k} C_{n-k+1}
$$

with the convention that $C_{2}=1$.

- Answer: Assume the given polygon has vertices $v_{0}, v_{1}, \ldots, v_{n-1}$, and let N_{k} be the number of divisions containing the triangle with vertices $v_{0}, v_{1}, v_{k}(k=2, \ldots, n-1)$. To each side of that triangle we have polygons with vertices $v_{1}, v_{2}, \ldots, v_{k}$ and $v_{k}, v_{k+1}, \ldots, v_{n-1}$ respectively. Each can be divided into C_{k} and C_{n-k+1} ways respectively, yielding $N_{k}=C_{k} C_{n-k+1}$ (note that this is true also for the special cases $k=2$ and $k=n-1$ under the convention $C_{2}=1$). After adding for $k=2, \ldots, n-1$ we get the desired result.

ANSWERS

NAME: \qquad

FALL 2006 NU PUTNAM SELECTION TEST

Problem A3. Evaluate the sum

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{1^{3}+2^{3}+\cdots+n^{3}}}
$$

Hint: What is the closed form for the sum $1^{3}+2^{3}+\cdots+n^{3}$?

- Answer: We have that $1^{3}+2^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$, hence

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{1^{3}+2^{3}+\cdots+n^{3}}}=\sum_{n=1}^{\infty} \frac{2}{n(n+1)}=2 \sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=2 .
$$

NAME:
ANSWERS

FALL 2006 NU PUTNAM SELECTION TEST

Problem A4. Let $p(x)=a x^{2}+b x+c$ be a polynomials with real coefficients. Assume that for some real number λ, the values $p(\lambda), p(\lambda+1)$, and $p(\lambda+2)$ are integers. Show that $2 a$, $2 b$, and $2 c$ are also integers.

- Answer: By hypothesis we have

$$
\left\{\begin{aligned}
a \lambda^{2}+b \lambda+c=u \\
a(\lambda+1)^{2}+b(\lambda+1)+c=v \\
a(\lambda+2)^{2}+b(\lambda+2)+c=w
\end{aligned}\right.
$$

where u, v, w are integers. Interpreting the above expression as a system of equations with unknowns a, b, c, and solving by Cramer's rule, we get

$$
a=\frac{a^{\prime}}{\operatorname{det}(M)}, \quad b=\frac{b^{\prime}}{\operatorname{det}(M)}, \quad c=\frac{c^{\prime}}{\operatorname{det}(M)},
$$

where $a^{\prime}, b^{\prime}, c^{\prime}$ are integers, and $\operatorname{det}(M)$ is the determinant of the coefficient matrix

$$
M=\left(\begin{array}{ccc}
\lambda^{2} & \lambda & 1 \\
(\lambda+1)^{2} & (\lambda+1) & 1 \\
(\lambda+2)^{2} & (\lambda+2) & 1
\end{array}\right)
$$

M is a Vandermonde matrix, and its determinant is $\operatorname{det}(M)=(\lambda-(\lambda+1))(\lambda-(\lambda+2))((\lambda+$ 1) $-(\lambda+2))=-2$, so all the denominators in the expressions for a, b, c above are -2 , and the desired result follows.

ANSWERS

NAME: \qquad
FALL 2006 NU PUTNAM SELECTION TEST

Problem A5. What is the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi}(\sin x)^{n} d x ?
$$

- Answer: Given any $0<\varepsilon<\pi / 2$, let f_{ε} be the function

$$
f_{\varepsilon}(x)= \begin{cases}1 & \text { if } x \in\left[\frac{\pi}{2}-\varepsilon, \frac{\pi}{2}+\varepsilon\right] \\ \sin \left(\frac{\pi}{2}-\varepsilon\right) & \text { otherwise }\end{cases}
$$

Then, we have $0 \leq \sin x \leq f_{\varepsilon}(x)$ for every $x \in[0, \pi]$, and

$$
\begin{aligned}
& 0<\int_{0}^{\pi}(\sin x)^{n} d x \leq \int_{0}^{\pi} f_{\varepsilon}(x)^{n} d x= \\
& \int_{0}^{\frac{\pi}{2}-\varepsilon} f_{\varepsilon}(x)^{n} d x+\int_{\frac{\pi}{2}-\varepsilon}^{\frac{\pi}{2}+\varepsilon} f_{\varepsilon}(x)^{n} d x+\int_{\frac{\pi}{2}+\varepsilon}^{\pi} f_{\varepsilon}(x)^{n} d x= \\
&\left(\frac{\pi}{2}-\varepsilon\right)\left\{\sin \left(\frac{\pi}{2}-\varepsilon\right)\right\}^{n}+2 \varepsilon+\left(\frac{\pi}{2}-\varepsilon\right)\left\{\sin \left(\frac{\pi}{2}-\varepsilon\right)\right\}^{n}
\end{aligned}
$$

Since $0<\sin \left(\frac{\pi}{2}-\varepsilon\right)<1$, the first and third term of the last expression tend to zero as $n \rightarrow \infty$, hence

$$
0 \leq \lim _{n \rightarrow \infty} \int_{0}^{\pi}(\sin x)^{n} d x \leq 2 \varepsilon
$$

Since that is true for arbitrary $\varepsilon \in(0, \pi / 2)$, it follows that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi}(\sin x)^{n} d x=0
$$

ANSWERS

NAME: \qquad
FALL 2006 NU PUTNAM SELECTION TEST

Problem A6. Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive numbers and $b_{1}, b_{2}, \ldots, b_{n}$ be a permutation of this sequence. Show that

$$
\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\cdots+\frac{a_{n}}{b_{n}} \geq n
$$

- Answer: Using the Arithmetic Mean-Geometric Mean inequality we get:

$$
\frac{1}{n}\left\{\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\cdots+\frac{a_{n}}{b_{n}}\right\} \geq \sqrt[n]{\frac{a_{1}}{b_{1}} \cdot \frac{a_{2}}{b_{2}} \cdots \frac{a_{n}}{b_{n}}}=1
$$

From here the desired result follows.

