NAME: \qquad
FALL 2010 NU PUTNAM SELECTION TEST

Problem A1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that $f(x, y)+f(y, z)+f(z, x)=0$ for all real numbers x, y, and z. Prove that there exists a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y)=g(x)-g(y)$ for all real numbers x and y.

NAME: \qquad

FALL 2010 NU PUTNAM SELECTION TEST

Problem A2. A convex polygon of n sides in the plane \mathbb{R}^{2} can be divided into nonoverlapping triangles by non-intersecting line segments connecting pairs of vertices. Suppose that C_{n} is the number of such divisions, e.g., $C_{3}=1, C_{4}=2, C_{5}=5$ (see figure).

Show that it satisfies the recursive relation

$$
C_{n}=\sum_{k=2}^{n-1} C_{k} C_{n-k+1}
$$

with the convention that $C_{2}=1$.

NAME: \qquad
FALL 2010 NU PUTNAM SELECTION TEST

Problem A3. Evaluate the sum

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{1^{3}+2^{3}+\cdots+n^{3}}}
$$

Hint: What is the closed form for the sum $1^{3}+2^{3}+\cdots+n^{3}$?

NAME: \qquad
FALL 2010 NU PUTNAM SELECTION TEST

Problem A4. Let $p(x)=a x^{2}+b x+c$ be a polynomials with real coefficients. Assume that for some real number λ, the values $p(\lambda), p(\lambda+1)$, and $p(\lambda+2)$ are integers. Show that $2 a$, $2 b$, and $2 c$ are also integers.

NAME: \qquad
FALL 2010 NU PUTNAM SELECTION TEST

Problem A5. What is the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi}(\sin x)^{n} d x ?
$$

NAME: \qquad
FALL 2010 NU PUTNAM SELECTION TEST

Problem A6. Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive numbers and $b_{1}, b_{2}, \ldots, b_{n}$ be a permutation of this sequence. Show that

$$
\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}+\cdots+\frac{a_{n}}{b_{n}} \geq n .
$$

