FALL 2010 NU PUTNAM SELECTION TEST

Problem A1. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that f(x, y) + f(y, z) + f(z, x) = 0 for all real numbers x, y, and z. Prove that there exists a function $g : \mathbb{R} \to \mathbb{R}$ such that f(x, y) = g(x) - g(y) for all real numbers x and y.

NAME: _

FALL 2010 NU PUTNAM SELECTION TEST

Problem A2. A convex polygon of n sides in the plane \mathbb{R}^2 can be divided into nonoverlapping triangles by non-intersecting line segments connecting pairs of vertices. Suppose that C_n is the number of such divisions, e.g., $C_3 = 1$, $C_4 = 2$, $C_5 = 5$ (see figure).

Show that it satisfies the recursive relation

$$C_n = \sum_{k=2}^{n-1} C_k C_{n-k+1} \,,$$

with the convention that $C_2 = 1$.

FALL 2010 NU PUTNAM SELECTION TEST

Problem A3. Evaluate the sum

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{1^3 + 2^3 + \dots + n^3}}.$$

Hint: What is the closed form for the sum $1^3 + 2^3 + \cdots + n^3$?

NAME: _

FALL 2010 NU PUTNAM SELECTION TEST

Problem A4. Let $p(x) = ax^2 + bx + c$ be a polynomials with real coefficients. Assume that for some real number λ , the values $p(\lambda)$, $p(\lambda + 1)$, and $p(\lambda + 2)$ are integers. Show that 2a, 2b, and 2c are also integers.

FALL 2010 NU PUTNAM SELECTION TEST

Problem A5. What is the limit

 $\lim_{n \to \infty} \int_0^\pi \left(\sin x \right)^n \, dx \, ?$

FALL 2010 NU PUTNAM SELECTION TEST

Problem A6. Let a_1, a_2, \ldots, a_n be positive numbers and b_1, b_2, \ldots, b_n be a permutation of this sequence. Show that

$$\frac{a_1}{b_1} + \frac{a_2}{b_2} + \dots + \frac{a_n}{b_n} \ge n.$$