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Problem A1. Let a1, a2, . . . , an be n not necessarily distinct integers. Prove that there
exist a subset of these numbers whose sum is divisible by n.

- Answer: Consider the numbers s1 = a1, s2 = a1 + a2,. . . , sn = a1 + a2 + · · ·+ an. If any of
them is divisible by n then we are done, otherwise their remainders are different from zero
modulo n. Since there are only n− 1 such remainders, two of the sums, say sp and sq, with
p < q, will have the same reminder modulo n, and sq − sp = ap+1 + · · ·+ aq will be divisible
by n.
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Problem A2. If a, b, and c are the sides of a triangle, prove that

a

b + c− a
+

b

c + a− b
+

c

a + b− c
≥ 3 .

- Answer:

- Solution 1:

Step 0 - The idea is that the lower bound 3 is attained when three sides are equal.

Step 1 - Replace both a and b by (a+b)/2, you can show by algebra that the sum is reduced.

Step 2 - When a and b are equal, the inequality, you can check easily that the inequality
holds.

- Solution 2: Set x = b + c− a, y = c + a− b, z = a + b− c. The triangle inequality implies
that x, y, and z are positive. Furthermore, a = (y + z)/2, b = (z + x)/2, and c = (x + y)/2.
The LHS of the inequality becomes:

y + z

2x
+

z + x
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2z
=

1
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y
+

y

x
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y
+
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z
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z
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)
≥ 3 .

- Solution 3: Work like in solution 2, but write the LHS like this:

y + z

2x
+

z + x

2y
+

x + y

2z
=

x + y + z

2x
+

x + y + z

2y
+

x + y + z

2z
− 3

2
.

By the AM-GM inequality we have that expression is greater than or equal to

3
3

2x

x + y + z
+

2y

x + y + z
+

2z

x + y + z

− 3

2
= 3 ,

and we are done.
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Problem A3. Does there exist a positive sequence an such that
∑∞

n=1 an and
∑∞

n=1 1/(n2an)
are convergent?

- Answer: There is no such sequence. If they were convergent their sum would be convergent
too, but by the AM-GM inequality we have:

∞∑
n=1

(
an +

1

n2an

)
≥

∞∑
n=1

2

n
= ∞ .
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Problem A4. On a table there is a row of fifty coins, of various denominations (the de-
nominations could be of any values). Alice picks a coin from one of the ends and puts it in
her pocket, then Bob chooses a coin from one of the ends and puts it in his pocket, and the
alternation continues until Bob pockets the last coin. Prove that Alice can play so that she
guarantees at least as much money as Bob.

- Answer: Alice adds the values of the coins in odd positions 1st, 3rd, 5th, etc., getting a
sum Sodd. Then she does the same with the coins placed in even positions 2nd, 4th, 6th,
etc., and gets a sum Seven. Assume that Sodd ≥ Seven. Then she will pick all the coins in odd
positions, forcing Bob to pick only coins in the even positions. To do so she stars by picking
the coin in position 1, so Bob can pick only the coins in position 2 or 50. If he picks the
coin in position 2, Alice will the pick coin in position 3, if he picks the coin in position 50
she picks the coin in position 49, and so on, with Alice always picking the coin at the same
side as the coin picked by Bob.

If Sodd ≤ Seven, then Alice will use a similar strategy ensuring that she will end up picking all
the coins in the even positions, and forcing Bob to pick the coins in the odd positions—this
time she will pick first the 50th coin, and then at each step she will pick a coin at the same
side as the coin picked by Bob.

�



NORTHWESTERN UNIVERSITY Thrusday, Oct 6th, 2011

NAME:
ANSWERS

FALL 2011 NU PUTNAM SELECTION TEST

Problem A5. Prove that there is no polynomial P (x) = anx
n + an−1x

n−1 + · · · + a0 with
integer coefficients and of degree at least 1 with the property that P (0), P (1), P (2),. . . , are
all prime numbers.

- Answer:

- Solution 1: By contradiction, assume that P (k) is a prime number for every k = 0, 1, 2, . . . .
We have

P (P (k) + k) ≡ P (k) ≡ 0 (mod P (k)),

Hence P (P (k) + k) is divisible by P (k). Since P (P (k) + k) and P (k) are both prime by
hypothesis, we have P (P (k)+k) = P (k) for every k ≥ 0, hence P (P (x)+x) and P (x) must be
the same polynomial. If P (x) is of degree d, then P (P (x)+x) has degree d2, and from here we
get that the only possibility is d = 1. If P (x) = ax+b, then P (P (x)+x) = (a2+a)x+(ab+b),
and if both are the same polynomial that implies a2+a = a, hence a = 0, which is impossible.

- Solution 2: Also by contradiction. We have that a0 = P (0) must be a prime number. Also,
P (ka0) is a multiple of a0 for every k = 0, 1, 2, . . . , but if P (ka0) is prime then P (ka0) = a0

for every k ≥ 0. This implies that the polynomial Q(x) = P (a0x) − a0 has infinitely many
roots, so it is identically zero, and P (a0x) = a0, contradicting the hypothesis that P is of
degree at least 1.
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Problem A6. Given thirteen real numbers r1, r2, . . . , r13, prove that there are two of them
rp, rq, p 6= q, such that |rp − rq| ≤ (2−

√
3)|1 + rprq|. (Note: 2−

√
3 = tan π

12
.)

- Answer: For each i = 1, . . . 13, let αi be the angle in the interval (−π/2, π/2) such that
ri = tan αi. Then two of those angles are at a distance not greater than than π/12, say
|αp − αq| ≤ π/12. Hence

2−
√

3 = tan π
12
≥ | tan (αp − αq)| =

| tan (αp)− tan (αq)|
|1 + tan (αp) tan (αq)|

=
|rp − rq|
|1 + rprq|

,

and the result follows.
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Problem A7. (Note: this question was not included in the final version of the test.) The
digital root of a number is the (single digit) value obtained by repeatedly adding the (base
10) digits of the number, then the digits of the sum, and so on until obtaining a single
digit—e.g. the digital root of 65,536 is 7, because 6 + 5 + 5 + 3 + 6 = 25 and 2 + 5 = 7.
Consider the sequence an = integer part of 10nπ, i.e.,

a1 = 31 , a2 = 314 , a3 = 3141 , a4 = 31415 , a5 = 314159 , . . .

and let bn be the sequence

b1 = a1 , b2 = aa2
1 , b3 = a

a
a3
2

1 , b4 = a
a

a
a4
3

2
1 , . . .

Find the digital root of b106 .

- Answer: The problem may look hard, but it is very easy, because the digital root of bn

becomes a constant very quickly. First note that the digital root of a number a is just the
reminder r of a modulo 9, and the digital root of an will be the remainder of rn modulo 9.

For a1 = 31 we have

digital root of a1 = digital root of 31 = 4 ;

digital root of a2
1 = digital root of 42 = 7;

digital root of a3
1 = digital root of 43 = 1;

digital root of a4
1 = digital root of 44 = 4;

and from here on it repeats with period 3, so the digital root of an
1 is 1, 4, and 7 for remainder

modulo 3 of n equal to 0, 1, and 2 respectively.

Next, we have a2 = 314 ≡ 2 (mod 3), a2
2 ≡ 22 ≡ 1 (mod 3), a3

2 ≡ 23 ≡ 2 (mod 3), and
repeating with period 2, so the reminder of an

2 depends only on the parity of n, with an
2 ≡ 1

(mod 3) if n is even, and an
2 ≡ 2 (mod 3) if n is odd.

And we are done because a3 is odd, and the exponent of a2 in the power tower defining bn

for every n ≥ 3 is odd, so the reminder modulo 3 of the exponent of a1 will be 2, and the
reminder modulo 9 of bn will be 7 for every n ≥ 3.

Hence, the answer is 7.
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