ANSWERS

NAME: \qquad

FALL 2012 NU PUTNAM SELECTION TEST

Problem A1. Prove that $(\sqrt{5}+2)^{1 / 3}-(\sqrt{5}-2)^{1 / 3}=1$.

- Answer: Let $x=(\sqrt{5}+2)^{1 / 3}-(\sqrt{5}-2)^{1 / 3}$. Raising to the third power, expanding and simplifying we get that x verifies the equation

$$
x^{3}+3 x-4=0 .
$$

On the other hand we have:

$$
x^{3}+3 x-4=(x-1)\left(x^{2}+x+4\right) .
$$

The second factor has no real roots, so the only real root of $x^{3}+3 x^{2}-4$ is 1 , and the result follows.

ANSWERS

NAME: \qquad

FALL 2012 NU PUTNAM SELECTION TEST

Problem A2. Let x be a real number. Prove that the sequence a_{n} with

$$
a_{n}=\sum_{k=1}^{n} \cos (k x)
$$

is bounded if and only if x is not a multiple of 2π.

- Answer: If x is a multiple of 2π then the all terms of the sum are 1 , so $a_{n}=n$, and the sequence diverges.

On the other hand, if x is not a multiple of 2π we will show that the sequence is bounded. In fact, we have $\cos k x=\Re\left\{e^{i k x}\right\}=$ real part of $e^{i k x}$, hence

$$
a_{2}=\Re\left\{\sum_{k=1}^{n} e^{i k x}\right\}=\Re\left\{\frac{e^{i(n+1) x}-e^{i x}}{e^{i x}-1}\right\} .
$$

If x is not a multiple of 2π then the denominator is not zero, and

$$
\left|a_{n}\right| \leq\left|\frac{e^{i(n+1) x}-e^{i x}}{e^{i x}-1}\right| \leq \frac{\left|e^{i(n+1) x}\right|+\left|e^{i x}\right|}{\left|e^{i x}-1\right|}=\frac{2}{\left|e^{i x}-1\right|}
$$

hence the sequence is bounded, Q.E.D.

ANSWERS

NAME: \qquad

FALL 2012 NU PUTNAM SELECTION TEST

Problem A3. For certain $n \times n$-matrices A and B, it is know that $A B=A+B$. Prove that $A B=B A$.

- Answer: If I is the identity $n \times n$-matrix then we have:

$$
(A-I)(B-I)=A B-A-B+I=A B-A B-I=I
$$

hence $B-I=(A-I)^{-1}$, and

$$
I=(B-I)(A-I)=B A-B-A+I=B A-A B+I,
$$

from which we get $B A-A B=0$, and the desired result follows.

ANSWERS

NAME: \qquad

FALL 2012 NU PUTNAM SELECTION TEST

Problem A4. Determine whether the following statement is true or false. For every finite set V of positive integers there exists a polynomial P with integer coefficients such that $P(1 / n)=n$ for all n in V.

- Answer: It is true.

A way to find such polynomial is to notice that $x P(x)-1$ must also be a polynomial with integer coefficients and roots at $1 / n$ for $n \in V$. A polynomial with such property is $f(x)=\prod_{n \in V}(1-n x)$, so $x P(x)-1=a f(x)$ with a integer would solve the problem. Note that the constant term of f is $f(0)=1$, hence we must take $a=-1$, and we get that the desired polynomial is $P(x)=\frac{1-f(x)}{x}=\frac{1}{x}\left(1-\prod_{n \in V}(1-n x)\right)$.

ANSWERS

NAME: \qquad

FALL 2012 NU PUTNAM SELECTION TEST

Problem A5. Suppose that $a_{n}>0$, and $\sum_{n=1}^{\infty} a_{n}$ converges. Show that there is a sequence $\left\{b_{n}\right\}$ such that $0<b_{n} \rightarrow \infty$, and $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.

- Answer: Under the given hypotheses we have that the tail of the series $d_{m}=\sum_{n=m}^{\infty} a_{n}$ is a decreasing sequence tending to zero. For each $k \geq 1$ let $m_{k}=$ the minimum m such that $d_{m}<1 / 4^{k}$, and let $b_{n}=1$ for $n<m_{1}, b_{n}=2^{k}$ for every n such that $m_{k} \leq n<m_{k+1}$. Then $0<b_{n} \rightarrow \infty$, and 1

$$
\begin{aligned}
\sum_{n=1}^{\infty} a_{n} b_{n} & =\sum_{n=1}^{m_{1}-1} a_{n} b_{n}+\sum_{k=1}^{\infty} \sum_{n=m_{k}}^{m_{k+1}-1} a_{n} b_{n} \\
& =\sum_{n=1}^{m_{1}-1} a_{n}+\sum_{k=1}^{\infty}(2^{k} \underbrace{\sum_{n=m_{k}}^{m_{k+1}-1} a_{n}}_{<1 / 4^{k}}) \\
& <\sum_{n=1}^{m_{0}-1} a_{n}+\sum_{k=1}^{\infty} \frac{1}{2^{k}} \\
& =\sum_{n=1}^{m_{0}-1} a_{n}+1
\end{aligned}
$$

hence $\sum_{n=1}^{\infty} a_{n} b_{n}$ also converges, Q.E.D.

[^0]
ANSWERS

NAME: \qquad

FALL 2012 NU PUTNAM SELECTION TEST

Problem A6. Let a, b, c the side lengths of a triangle T. Prove that there is a triangle with side lengths a^{2}, b^{2}, and c^{2} if and only if T is acute (all its angles are acute).

- Answer: A necessary and sufficient condition for three positive numbers x, y and z to be side lengths of some triangle is $x<y+z, y<z+x$, and $z<x+y$. In our case that leads to $a^{2}<b^{2}+c^{2}$ and similar inequalities obtained by rotation of a, b, c. By the law of cosines applied to triangle T we have $a^{2}=b^{2}+c^{2}-2 a b \cos A$, where A is the angle opposite to a. Then the condition $a^{2}<b^{2}+c^{2}$ is equivalent to $\cos A>0$, or $A<\frac{\pi}{2}$ (A acute). The same reasoning applies to the other angles.

[^0]: ${ }^{1}$ Note: Empty sums (with no terms) have value zero, e.g., if $m_{k}=m_{k+1}$, then $\sum_{n=m_{k}}^{m_{k+1}-1} a_{i}$ is empty and its value is zero.

