NAME: \qquad
FALL 2012 NU PUTNAM SELECTION TEST

Problem A1. Prove that $(\sqrt{5}+2)^{1 / 3}-(\sqrt{5}-2)^{1 / 3}=1$.

NAME: \qquad
FALL 2012 NU PUTNAM SELECTION TEST

Problem A2. Let x be a real number. Prove that the sequence a_{n} with

$$
a_{n}=\sum_{k=1}^{n} \cos (k x)
$$

is bounded if and only if x is not a multiple of 2π.

NAME: \qquad
FALL 2012 NU PUTNAM SELECTION TEST

Problem A3. For certain $n \times n$-matrices A and B, it is know that $A B=A+B$. Prove that $A B=B A$.

NAME: \qquad

FALL 2012 NU PUTNAM SELECTION TEST

Problem A4. Determine whether the following statement is true or false. For every finite set V of positive integers there exists a polynomial P with integer coefficients such that $P(1 / n)=n$ for all n in V.

NAME: \qquad
FALL 2012 NU PUTNAM SELECTION TEST

Problem A5. Suppose that $a_{n}>0$, and $\sum_{n=1}^{\infty} a_{n}$ converges. Show that there is a sequence $\left\{b_{n}\right\}$ such that $0<b_{n} \rightarrow \infty$, and $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges.

NAME: \qquad
FALL 2012 NU PUTNAM SELECTION TEST

Problem A6. Let a, b, c the side lengths of a triangle T. Prove that there is a triangle with side lengths a^{2}, b^{2}, and c^{2} if and only if T is acute (all its angles are acute).

