ANSWERS

NAME: \qquad

FALL 2013 NU PUTNAM SELECTION TEST

Problem A1. Find all integer solutions to the system of equations

$$
\left\{\begin{array}{l}
x^{2}-y^{2}=16 \\
x^{3}-y^{3}=98
\end{array}\right.
$$

- Answer: We have $x^{2}-y^{2}=(x-y)(x+y)$, and $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$ hence $x-y$ is a common factor of 16 and 98 , i.e., a divisor of $\operatorname{gcd}(16,98)=2$. The second equation $x^{3}-y^{3}=98$ shows that $x>y$, hence $x-y>0$, so the only possibilities are the positive divisors of 2, i.e., $x-y=1$ and $x-y=2$.

If $x-y=1$, then $x+y=16$, and from here we get $x=17 / 2, y=15 / 2$, which are not integers and do not satisfy $x^{3}-y^{3}=98$.

If $x-y=2$, then $x+y=8$, and from here we get $x=5, y=3$, which do satisfy the system. So, the only integer solution is

$$
(x, y)=(5,3) \text {. }
$$

ANSWERS

NAME: \qquad

FALL 2013 NU PUTNAM SELECTION TEST

Problem A2. Prove that 48 divides $n^{4}-1$ if n is not a multiple of 2 or 3 .

- Answer: Since $48=16 \cdot 3$, it suffices to prove that (with the given conditions) 3 and 16 both divide $n^{4}-1$.

If n is not a multiple of 3 , then $n \equiv \pm 1(\bmod 3)$, and $n^{4} \equiv 1(\bmod 3)$, hence $n^{4}-1 \equiv 0$ $(\bmod 3)$, and $n^{4}-1$ is divisible by 3 .

If n is not a multiple of 2 then n is odd, $n+1$ and $n-1$ are two consecutive even numbers, so one of them is also a multiple of 4 , and $n^{2}-1=(n+1)(n-1)$ is a multiple of 8 .

On the other hand $n^{2}+1$ is even.
Consequently, $n^{4}-1=\left(n^{2}+1\right)\left(n^{2}-1\right)$ is a multiple of $2 \cdot 8=16$.
Combined with the fact that $n^{4}-1$ is divisible by 3 we get that $n^{4}-1$ is divisible by 48 , QED.

ANSWERS

NAME: \qquad

FALL 2013 NU PUTNAM SELECTION TEST

Problem A3. We define a sequence $\left\{a_{n}\right\}_{n=1,2,3, \ldots}$ recursively in the following way: $a_{1}=1$, $a_{n+1}=2\left(a_{n}+1\right)$ for $n=1,2,3, \ldots$. Find a close form for a_{n}.

- Answer: We define a new sequence $b_{n}=a_{n}+2$, which verifies $b_{1}=a_{1}+2=3, b_{n+1}=$ $a_{n+1}+2=2\left(a_{n}+1\right)+2=2 a_{n}+4=2\left(a_{n}+2\right)=2 b_{n}$. Hence $b_{n}=3 \cdot 2^{n-1}$, and

$$
a_{n}=3 \cdot 2^{n-1}-2 .
$$

ANSWERS

NAME: \qquad

FALL 2013 NU PUTNAM SELECTION TEST

Problem A4. Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \not \equiv 0$ and $f(4 x)=f(2 x)+f(x)$ for every real x.

- Answer: We try a function of the form $f(x)=A x^{\alpha}$, so it must verify $A(4 x)^{\alpha}=A(2 x)^{\alpha}+$ $A x^{\alpha}$, or equivalently $4^{\alpha}=2^{\alpha}+1$. From here we get $2^{\alpha}=\frac{1 \pm \sqrt{5}}{2}$. Only the positive solution makes sense in this case, and we get $\alpha=\log _{2} \phi$, where $\phi=\frac{1+\sqrt{5}}{2}$ is the golden ratio. Hence an answer is $f(x)=A x^{\log _{2} \phi}(A \neq 0)$, for $x>0$.

Since the exponent is not an integer we must be careful about how to extend f to negative x. The following extension works for every $x \in \mathbb{R}$:

$$
f(x)= \begin{cases}A x^{\log _{2} \phi} & (x>0) \\ 0 & (x=0) \\ B|x|^{\log _{2} \phi} & (x<0)\end{cases}
$$

where A, B do not need to be the same, but they should not be both zero if we want $f \not \equiv 0$.
(Note 1: The same solution can be expressed in other ways using the identity $x^{\log _{2} \phi}=\phi^{\log _{2} x}$.)
(Note 2: There are other possible solutions, e.g. $f(x)=F_{n}$ for $x \in\left[2^{n}, 2^{n+1}\right)(n \in \mathbb{Z})$, where F_{n} is the bidirectional Fibonacci sequence, and $f(-x)=f(x)$.)

ANSWERS

NAME: \qquad

FALL 2013 NU PUTNAM SELECTION TEST

Problem A5. Let A, B, C, D be the following matrices:

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \quad B=\left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad D=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Is it possible to obtain the following matrix:

$$
E=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

by multiplying the given matrices A, B, C, D (in any order and any number of times)?

- Answer: The answer is no. If P and Q are two square matrices of the same dimension then $\operatorname{det}(P Q)=\operatorname{det} P \operatorname{det} Q$. We have $\operatorname{det} A=\operatorname{det} B=\operatorname{det} C=\operatorname{det} D=1$, so any product of those matrices will have determinant 1 . But $\operatorname{det} E=-1$.

ANSWERS

NAME: \qquad

FALL 2013 NU PUTNAM SELECTION TEST

Problem A6. Let x, y, z be three real numbers such that $0<x, y<\pi, z=(x+y) / 2$. Prove:

$$
\sqrt{\frac{\sin x}{x} \frac{\sin y}{y}} \leq \frac{\sin z}{z}
$$

- Answer: Let $f:(0, \pi) \rightarrow \mathbb{R}$ the function $f(x)=\ln \left(\frac{\sin x}{x}\right)=\ln \sin x-\ln x$. We will prove $f\left(\frac{x+y}{2}\right) \geq \frac{1}{2}(f(x)+f(y))$.
The derivative of f is $f^{\prime}(x)=\cot x-\frac{1}{x}$, and the second derivative is $f^{\prime \prime}(x)=-\frac{1}{\sin ^{2} x}+\frac{1}{x^{2}}$. Since $x>\sin x$ for $x \in(0, \pi)$ we have $f^{\prime \prime}(x)<0$ for every $x \in(0, \pi)$, hence f is a concave function. As such it verifies $\lambda f(x)+(1-\lambda) f(y) \leq f(\lambda x+(1-\lambda) y)$ for $x, y \in(0, \pi)$ and $0 \leq \lambda \leq 1$. The result is the particular case $\lambda=1 / 2$.

Finally, we have:

$$
\sqrt{\frac{\sin x}{x} \frac{\sin y}{y}}=\sqrt{e^{f(x)} e^{f(y)}}=e^{\frac{1}{2}(f(x)+f(y))} \leq e^{f\left(\frac{x+y}{2}\right)}=e^{f(z)}=\frac{\sin z}{z}
$$

