ANSWERS

NAME: \qquad
FALL 2014 NU PUTNAM SELECTION TEST

Problem A1. Show that

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(1+n)} \leq \pi
$$

- Answer: The sum is bounded by

$$
\int_{0}^{\infty} \frac{d x}{\sqrt{x}(1+x)}=2 \int_{0}^{\infty} \frac{d y}{1+y^{2}}=\pi
$$

ANSWERS

NAME: \qquad
FALL 2014 NU PUTNAM SELECTION TEST

Problem A2. Find the following infinite product:

$$
P=\prod_{n=1}^{\infty}\left(1+\left(\frac{1}{7}\right)^{2^{n}}\right)
$$

Write the result as a fraction $P=\frac{a}{b}$ in least terms.

- Answer: Let $P_{N}=\prod_{n=1}^{N}\left(1+\left(\frac{1}{7}\right)^{2^{n}}\right)$. Then, we have

$$
\begin{aligned}
\left(1-\left(\frac{1}{7}\right)^{2}\right) P_{N} & =\left(1-\left(\frac{1}{7}\right)^{2}\right)\left(1+\left(\frac{1}{7}\right)^{2}\right)\left(1+\left(\frac{1}{7}\right)^{4}\right)\left(1+\left(\frac{1}{7}\right)^{8}\right) \cdots\left(1+\left(\frac{1}{7}\right)^{2^{N}}\right) \\
& =\left(1-\left(\frac{1}{7}\right)^{4}\right)\left(1+\left(\frac{1}{7}\right)^{4}\right)\left(1+\left(\frac{1}{7}\right)^{8}\right) \cdots\left(1+\left(\frac{1}{7}\right)^{2^{N}}\right) \\
& =\left(1-\left(\frac{1}{7}\right)^{8}\right)\left(1+\left(\frac{1}{7}\right)^{8}\right) \cdots\left(1+\left(\frac{1}{7}\right)^{2^{N}}\right) \\
& \cdots \\
& =\left(1-\left(\frac{1}{7}\right)^{2^{(N+1)}}\right) .
\end{aligned}
$$

Hence,

$$
\left(1-\left(\frac{1}{7}\right)^{2}\right) P=\lim _{N \rightarrow \infty}\left\{\left(1-\frac{1}{7}\right) P\right\}=\lim _{N \rightarrow \infty}\left(1-\left(\frac{1}{7}\right)^{2^{(N+1)}}\right)=1,
$$

and $P=\frac{1}{1-\left(\frac{1}{7}\right)^{2}}=\frac{49}{48}$.

ANSWERS

NAME: \qquad

FALL 2014 NU PUTNAM SELECTION TEST

Problem A3. Let S be a set with even number of elements, and $f: S \rightarrow S$ a map of S into itself such that $f \circ f: S \rightarrow S$ is the identity map. Show that the set of the fixed points has even number of elements.

- Answer: Let T be the set of points $x \in S$ such that $f(x) \neq x$ (non-fixed points). Consider the set P of unordered pairs $\{z, f(z)\}$ with $z \in T$. The map $\theta: T \rightarrow P$ defined by $\theta(x)=\{x, f(x)\}$ is exactly two-to-one: the only preimage of $\{z, f(z)\}$ are the two distinct elements z and $f(z)$. It follows that $|T|=2|P|$, i.e., T has even number of elements. Its complement $S \backslash T$ also has even number of elements.

ANSWERS

NAME: \qquad

FALL 2014 NU PUTNAM SELECTION TEST

Problem A4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ a continuous function without fixed points, i.e., there is no $x \in \mathbb{R}$ such that $f(x)=x$. Let n be a positive integer. Prove that $f^{n}=\underbrace{f \circ f \circ \cdots \circ f}_{n}$ has no fixed points either.

- Answer: If f has not fixed points then $f(x)-x$ is never zero, so either $f(x)-x>0$ for every $x \in \mathbb{R}$, or $f(x)-x<0$ for every $x \in \mathbb{R}$. Then for every $x \in \mathbb{R}$ the sequence $x, f(x), f^{2}(x), \ldots$ is strictly increasing or strictly decreasing, and consequently we cannot have $f^{n}(x)=x$.

ANSWERS
NAME: \qquad
FALL 2014 NU PUTNAM SELECTION TEST

Problem A5. The Fibonacci numbers $0,1,1,2,3,5,8,13, \ldots$ are defined as $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ (for $n \geq 2$). The digital root of a non-negative integer is the (single digit) value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number is reached. For example, the digital root of 65,536 is 7 , because $6+5+5+3+6=25$ and $2+5=7$. Prove that there are integers a, b, with $a>0$ and $b \geq 0$, such that all Fibonacci numbers of the form $F_{a n+b}, n=0,1,2,3, \ldots$, have the same digital root.

- Answer: The digital root of a positive number is just its residue modulo 9, except when the residue is zero, in which case the digital sum is 9 . So all we need to prove is that for some $a>0, b \geq 0, F_{a n+b}$ is constant modulo 9 . For each $k \geq 0$, let f_{k} the integer in $[0,1,2,3,4,5,6,7,8]$ such that $F_{k} \equiv f_{k}(\bmod 9)$. Note that $f_{k}+f_{k+1} \equiv f_{k+2}(\bmod 9)$.

Since the set of pairs $(p, q), 0 \leq p, q \leq 8$, is finite, the sequence of pairs $\left(f_{k}, f_{k+1}\right)$ will end up being the same for two different values of $k<k^{\prime}:\left(f_{k}, f_{k+1}\right)=\left(f_{k^{\prime}}, f_{k^{\prime}+1}\right)$. Hence, because of the recurrence relation, we will have $f_{k+2}=f_{k^{\prime}+2}, f_{k+3}=f_{k^{\prime}+3}, \ldots f_{k+m}=f_{k^{\prime}+m}$ for every $m \geq 0$. Taking $a=k^{\prime}-k, b=k$ we get that the sequence $f_{a n+b}$ is constant and equal to f_{k}, and the desired result follows.

NAME:
ANSWERS
\qquad

FALL 2014 NU PUTNAM SELECTION TEST

Problem A6. Let a, b, c three positive real numbers prove:

$$
\sqrt{a^{2}+1}+\sqrt{b^{2}+4}+\sqrt{c^{2}+9} \geq 2 \sqrt{3} \sqrt{a+b+c} .
$$

- Answer: Consider the complex numbers $u=a+i, v=b+2 i, w=c+3 i$. By the triangle inequality: $|u|+|v|+|w| \geq|u+v+w|$, i.e.:

$$
\sqrt{a^{2}+1}+\sqrt{b^{2}+4}+\sqrt{c^{2}+9} \geq \sqrt{(x+y+z)^{2}+36}
$$

By the AM-GM inequality:

$$
\frac{(x+y+z)^{2}+36}{2} \geq \sqrt{36(x+y+z)^{2}}=6(x+y+z)
$$

Hence:

$$
\sqrt{a^{2}+1}+\sqrt{b^{2}+4}+\sqrt{c^{2}+9} \geq \sqrt{12(x+y+z)}=2 \sqrt{3} \sqrt{a+b+c} .
$$

