NAME: \qquad
FALL 2014 NU PUTNAM SELECTION TEST

Problem A1. Show that

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(1+n)} \leq \pi
$$

NAME: \qquad
FALL 2014 NU PUTNAM SELECTION TEST

Problem A2. Find the following infinite product:

$$
P=\prod_{n=1}^{\infty}\left(1+\left(\frac{1}{7}\right)^{2^{n}}\right)
$$

Write the result as a fraction $P=\frac{a}{b}$ in least terms.

NAME: \qquad
FALL 2014 NU PUTNAM SELECTION TEST

Problem A3. Let S be a set with even number of elements, and $f: S \rightarrow S$ a map of S into itself such that $f \circ f: S \rightarrow S$ is the identity map. Show that the set of the fixed points has even number of elements.

NAME: \qquad
FALL 2014 NU PUTNAM SELECTION TEST

Problem A4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ a continuous function without fixed points, i.e., there is no $x \in \mathbb{R}$ such that $f(x)=x$. Let n be a positive integer. Prove that $f^{n}=\underbrace{f \circ f \circ \cdots \circ f}_{n}$ has no fixed points either.

NAME: \qquad

FALL 2014 NU PUTNAM SELECTION TEST

Problem A5. The Fibonacci numbers $0,1,1,2,3,5,8,13, \ldots$ are defined as $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ (for $n \geq 2$). The digital root of a non-negative integer is the (single digit) value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number is reached. For example, the digital root of 65,536 is 7 , because $6+5+5+3+6=25$ and $2+5=7$. Prove that there are integers a, b, with $a>0$ and $b \geq 0$, such that all Fibonacci numbers of the form $F_{a n+b}, n=0,1,2,3, \ldots$, have the same digital root.

NAME: \qquad
FALL 2014 NU PUTNAM SELECTION TEST

Problem A6. Let a, b, c three positive real numbers prove:

$$
\sqrt{a^{2}+1}+\sqrt{b^{2}+4}+\sqrt{c^{2}+9} \geq 2 \sqrt{3} \sqrt{a+b+c} .
$$

