NAME: \qquad
FALL 2015 NU PUTNAM SELECTION TEST

Problem A1. Show that $\log (1+x)>x /(1+x)$ for all $x>0$.

NAME: \qquad
FALL 2015 NU PUTNAM SELECTION TEST

Problem A2. Define the sequence $a_{0}=0, a_{n+1}=\sqrt{\frac{1+a_{n}}{2}}$ for $n \geq 0$. Find

$$
S=\sum_{n=0}^{\infty} \arccos a_{n}
$$

(Note: $y=\arccos x \Leftrightarrow y \in[0, \pi]$ and $\cos y=x$.)

NAME: \qquad
FALL 2015 NU PUTNAM SELECTION TEST

Problem A3. Let r be a real number in the interval $[0,1)$. Find the sum

$$
S=\sum_{k=1}^{\infty} \frac{(-1)^{\left\lfloor 2^{k} r\right\rfloor}}{2^{k}},
$$

where $\lfloor x\rfloor=$ integer part of $x=$ greatest integer less that or equal to x.

NAME: \qquad

FALL 2015 NU PUTNAM SELECTION TEST

Problem A4. One hundred passengers board a plane with exactly 100 seats. The first passenger takes a seat at random. The second passenger takes his own seat if it is available, otherwise he takes at random a seat among the available ones. The third passenger takes his own seat if it is available, otherwise he takes at random a seat among the available ones. This process continues until all the 100 passengers have boarded the plane. What is the probability that the last passenger takes his own seat?

NAME: \qquad

FALL 2015 NU PUTNAM SELECTION TEST

Problem A5. Prove that the following divisibility criteria by 61 actually works. Divisibility by 61: Let n be a positive integer. Let d be the rightmost digit of n (in decimal notation), and let n^{\prime} be the number obtained by removing from n its rightmost digit (if n has only one digit then $n^{\prime}=0$). Replace n with $n^{\prime}-6 d$. Repeat those steps while the result is still a positive integer. If the process ends in zero then the original number is divisible by 61 , otherwise it is not. Example for $n=21045: 2104-6 \cdot 5=2074,207-6 \cdot 4=183,18-6 \cdot 3=0$. Hence 21045 is divisible by 61 .

NAME: \qquad
FALL 2015 NU PUTNAM SELECTION TEST

Problem A6. Flip a fair coin until heads turns out twice consecutively. What is the expected number of flips?

