NAME: \qquad
FALL 2016 NU PUTNAM SELECTION TEST

Problem A1. Assume that a rectangle of dimensions a and b contains inside it another rectangle of dimensions a^{\prime} and b^{\prime}. Prove that $a^{\prime}+b^{\prime}<a+b$.

NAME: \qquad

FALL 2016 NU PUTNAM SELECTION TEST

Problem A2. We place $4 n$ points uniformly on a circle. Then we paint any $2 n$ of them in red and the other $2 n$ points in blue. Prove that regardless of which points we have painted with each color, there is always a straight line that divides the circle in half leaving exactly n red points and n blue points at each side.

NAME: \qquad
FALL 2016 NU PUTNAM SELECTION TEST

Problem A3. Show that for every positive integer $n, 4^{n}+6 n-1$ is a multiple of 9 .

NAME: \qquad
FALL 2016 NU PUTNAM SELECTION TEST

Problem A4. Prove $\int_{0}^{\frac{\pi}{2}} e^{\sin x} d x \geq \frac{\pi}{2}(e-1)$.

NAME: \qquad

FALL 2016 NU PUTNAM SELECTION TEST

Problem A5. A number n has 250 positive divisors, sorted and indexed in increasing order: $1=d_{1}<d_{2}<d_{3}<\cdots<d_{250}=n$. Ted is allowed to pick two indices i and $j(1 \leq i, j \leq 249)$, with the condition that $i+j \neq 251$, and he is given in return divisors d_{i} and d_{j}. Show that Ted can always find the value of n by picking appropriately those two indices.

