ANSWERS

NAME: \qquad

FALL 2017 NU PUTNAM SELECTION TEST

Problem A1. Prove that the following equation has no solutions in positive integers:

$$
8 x^{4}+4 y^{4}+2 z^{4}=t^{4} .
$$

(Hint: t must be an even integer.)

- Answer: Since the left hand side is even then t must be even, $t=2 t^{\prime}$, hence:

$$
8 x^{4}+4 y^{4}+2 z^{4}=16 t^{\prime 4}
$$

and simplifying by 2 :

$$
4 x^{4}+2 y^{4}+z^{4}=8 t^{\prime}
$$

Now all terms different from z^{4} are even, hence z must be even: $z=2 z^{\prime}$, hence:

$$
4 x^{4}+2 y^{4}+16 z^{\prime 4}=8 t^{\prime 4}
$$

Simplifying by 2 again we get

$$
2 x^{4}+y^{4}+8 z^{\prime 4}=4 t^{\prime 4}
$$

A similar reasoning shows that y must be even, $y=2 y^{\prime}$, and after simplifying we get:

$$
x^{4}+8 y^{\prime 4}+4 z^{\prime 4}=2 t^{\prime 4}
$$

Next we do the same for x so we have $x=2 x^{\prime}$, and after simplifying:

$$
8 x^{\prime 4}+4 y^{\prime 4}+2 z^{\prime 4}=t^{\prime 4}
$$

This shows that given a solution in positive integers (x, y, z, t) then there is another solution $\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)$ in positive integers with $x^{\prime}=x / 2<x, y^{\prime}=y / 2<y, z^{\prime}=z / 2<z, t^{\prime}=$ $t / 2$. Repeating the reasoning we get an infinite sequence of positive solutions of the form $\left(x / 2^{k}, y / 2^{k}, z / 2^{k}, t / 2^{k}\right)$ for k arbitrarily large, but that is impossible because no integer is divisible by arbitrarily large powers of 2 .

ANSWERS

NAME: \qquad

FALL 2017 NU PUTNAM SELECTION TEST

Problem A2. Let $a_{1}, a_{2}, a_{3}, \ldots$ a strictly increasing sequence of positive integers, i.e., $a_{n} \in$ $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$, and $n<m \Rightarrow a_{n}<a_{m}$ for every m, n. Find all strictly increasing functions functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$, where $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$, such that $f\left(a_{n}\right) \leq a_{n}$ for every $n \in \mathbb{Z}^{+}$.

- Answer: The only solution is $f(n)=n$ for every $n \in \mathbb{Z}^{+}$.

In fact, since f is strictly increasing then $f(n)<f(n+1)$ for every n, hence $f(n)+1 \leq$ $f(n+1)$, and by induction $f(n)=f(1+(n-1)) \geq f(1)+n-1$. By hypothesis we have $f\left(a_{1}\right) \leq a_{1}$, hence $f(1)+a_{1}-1 \leq f\left(a_{1}\right) \leq a_{1}$, and from here we get $f(1) \leq 1$. But $f(1) \in \mathbb{Z}^{+}$, hence $f(1)=1$, and $f(n) \geq n$.

Finally we show that $f(n)>n$ cannot hold for any n. In fact if $f(n)>n$ for some n, consider any $a_{k}>n$. Then $f\left(a_{k}\right)=f\left(n+\left(a_{k}-n\right)\right) \geq f(n)+a_{k}-n>a_{k}$, contradicting the hypothesis $f\left(a_{n}\right) \leq a_{n}$ for every n.

So, we have $f(n) \geq n$, and $f(n) \ngtr n$, hence $f(n)=n$ for every n, Q.E.D.

ANSWERS

NAME: \qquad
FALL 2017 NU PUTNAM SELECTION TEST

Problem A3. Find the following limit:

$$
L=\lim _{n \rightarrow \infty} \sqrt[n]{\prod_{k=1}^{n}\left(1+\frac{k}{n}\right)^{1 /\left(1+\frac{k}{n}\right)}}
$$

(Hint: Take the logarithm of the expression under the limit.)

- Answer: The logarithm of the expression inside the limit is

$$
\sum_{k=1}^{n} \frac{\log \left(1+\frac{k}{n}\right)}{1+\frac{k}{n}} \frac{1}{n}
$$

That is a Riemann sum for the integral

$$
\int_{0}^{1} \frac{\log (1+x)}{1+x} d x=\left[\frac{1}{2} \log ^{2}(1+x)\right]_{0}^{1}=\frac{\log ^{2} 2}{2}
$$

Hence the limit is

$$
L=e^{\frac{\log ^{2} 2}{2}}=2^{\frac{\log 2}{2}} .
$$

ANSWERS

NAME: \qquad

FALL 2017 NU PUTNAM SELECTION TEST

Problem A4. A fair coin is tossed repeatedly. What is the expected number of times the coin will be tossed until getting two heads in a row for the first time?

- Answer: Let E the expected number of tosses until getting two heads in a row for the first time.

Denote heads and tails as H and T respectively. The following three things can happen:
(1) We get T in the first toss, with probability $1 / 2$.
(2) We get $H T$ in the first two tosses, with probability $1 / 4$.
(3) We get $H H$ in the first two tosses, with probability $1 / 4$.

In cases (1) and (2), after getting any of those results, the expected number of additional tosses we must wait to get two heads in a row is again E, which yields $1+E$ tosses with probability $1 / 2$, and $2+E$ with probability $1 / 4$. In case (3) we end the sequence after only 2 tosses, and this happens with probability $1 / 4$. Hence:

$$
E=\frac{1}{2}(1+E)+\frac{1}{4}(2+E)+\frac{1}{4} \cdot 2 .
$$

From here we get $E=6$,

ANSWERS

NAME: \qquad

FALL 2017 NU PUTNAM SELECTION TEST

Problem A5. Let $a_{k}, k=1,2,3, \ldots$, be a sequence of strictly positive numbers of period $2 N$. Show that

$$
\sum_{j=1}^{2 N} \frac{a_{N+j}}{a_{j}} \geq 2 N
$$

- Answer: We will use $x+\frac{1}{x} \geq 2$ for every positive real number x. We have

$$
\begin{aligned}
\sum_{j=1}^{2 N} \frac{a_{N+j}}{a_{j}} & =\sum_{j=1}^{N} \frac{a_{N+j}}{a_{j}}+\sum_{j=1}^{N} \frac{a_{2 N+j}}{a_{N+j}} \\
& =\sum_{j=1}^{N} \frac{a_{N+j}}{a_{j}}+\sum_{j=1}^{N} \frac{a_{j}}{a_{N+j}} \quad\left(a_{2 N+j}=a_{j}\right) \\
& =\sum_{j=1}^{N}\left(\frac{a_{N+j}}{a_{j}}+\frac{a_{j}}{a_{N+j}}\right) \\
& \geq \sum_{j=1}^{N} 2=2 N .
\end{aligned}
$$

ANSWERS

NAME: \qquad

FALL 2017 NU PUTNAM SELECTION TEST

Problem A6. Given any positive integer a consider the sequence $a_{n}=a^{a^{a^{n}}}, n=1,2,3, \ldots$. Prove that regardless of the integer a chosen, the rightmost digit of the decimal representation of a_{n} remains constant.

- Answer: First note that if $a=1$ then $a_{n}=1$ for every n, and this case is trivial, so in the following we assume $a \geq 2$.

We must prove that a_{n} is constant modulo 10 .
Note that for any integer a, the sequence a^{k} for $k=1,2,3, \ldots$ is periodic modulo 10 with a period of 1,2 or 4 , with the rightmost digits following one of these patterns:

$$
\begin{aligned}
& 0 \rightarrow 0 \\
& 1 \rightarrow 1 \\
& 2 \rightarrow 4 \rightarrow 8 \rightarrow 6 \rightarrow 2 \\
& 3 \rightarrow 9 \rightarrow 7 \rightarrow 1 \rightarrow 3 \\
& 4 \rightarrow 6 \rightarrow 4 \\
& 5 \rightarrow 5 \\
& 6 \rightarrow 6 \\
& 7 \rightarrow 9 \rightarrow 3 \rightarrow 1 \rightarrow 7 \\
& 8 \rightarrow 4 \rightarrow 2 \rightarrow 6 \rightarrow 8 \\
& 9 \rightarrow 1 \rightarrow 9
\end{aligned}
$$

Hence a^{k} modulo 10 depends only on the value of k modulo 4, meaning that if $k \equiv k^{\prime}$ $(\bmod 4)$ then $a^{k} \equiv a^{k^{\prime}}(\bmod 10)$.

Hence $a^{a^{k}}$ modulo 10, depends only on the value of a^{k} modulo 4. But a^{k} is eventually periodic modulo 4 with period 1 or 2 , and patterns $0 \rightarrow 0,1 \rightarrow 1,2 \rightarrow 0 \rightarrow 0,3 \rightarrow 1 \rightarrow 3$ (all modulo 4). Furthermore note that we can drop "eventually" if $k \geq 2$, since the only case in which a^{k} is not strictly periodic module 4 is at the starting point of the pattern $2 \rightarrow 0 \rightarrow 0$, more specifically, if $a \equiv 2(\bmod 4)$ then $a^{1} \equiv 2(\bmod 4)$, and for $k \geq 2$ we have $a^{k} \equiv 0(\bmod 4)$. Hence for $k \geq 2, a^{k}$ modulo 4 depends only on the parity of k, meaning than if $k, k^{\prime} \geq 2$ and k and k^{\prime} have the same parity then $a^{k} \equiv a^{k^{\prime}}(\bmod 4)$.

Finally we have that the parity of a^{n} is the same as the parity of a, hence the parity of a^{n} remains constant. This fact (combined with $a^{n} \geq 2$) implies that $a^{a^{n}}$ modulo 4 remains constant. And this implies that $a^{a^{a^{n}}}$ modulo 10 remains constant.

