NAME: \qquad
FALL 2017 NU PUTNAM SELECTION TEST

Problem A1. Prove that the following equation has no solutions in positive integers:

$$
8 x^{4}+4 y^{4}+2 z^{4}=t^{4} .
$$

(Hint: t must be an even integer.)

NAME: \qquad
FALL 2017 NU PUTNAM SELECTION TEST

Problem A2. Let $a_{1}, a_{2}, a_{3}, \ldots$ a strictly increasing sequence of positive integers, i.e., $a_{n} \in$ $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$, and $n<m \Rightarrow a_{n}<a_{m}$ for every m, n. Find all strictly increasing functions functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$, where $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$, such that $f\left(a_{n}\right) \leq a_{n}$ for every $n \in \mathbb{Z}^{+}$.

NAME: \qquad
FALL 2017 NU PUTNAM SELECTION TEST

Problem A3. Find the following limit:

$$
L=\lim _{n \rightarrow \infty} \sqrt[n]{\prod_{k=1}^{n}\left(1+\frac{k}{n}\right)^{1 /\left(1+\frac{k}{n}\right)}}
$$

(Hint: Take the logarithm of the expression under the limit.)

NAME: \qquad
FALL 2017 NU PUTNAM SELECTION TEST

Problem A4. A fair coin is tossed repeatedly. What is the expected number of times the coin will be tossed until getting two heads in a row for the first time?

NAME: \qquad
FALL 2017 NU PUTNAM SELECTION TEST

Problem A5. Let $a_{k}, k=1,2,3, \ldots$, be a sequence of strictly positive numbers of period $2 N$. Show that

$$
\sum_{j=1}^{2 N} \frac{a_{N+j}}{a_{j}} \geq 2 N
$$

NAME: \qquad

FALL 2017 NU PUTNAM SELECTION TEST

Problem A6. Given any positive integer a consider the sequence $a_{n}=a^{a^{a^{n}}}, n=1,2,3, \ldots$. Prove that regardless of the integer a chosen, the rightmost digit of the decimal representation of a_{n} remains constant.

