ANSWERS

NAME: \qquad

FALL 2018 NU PUTNAM SELECTION TEST

Problem A1. Suppose that a non-negative integer n is the sum of two triangular numbers

$$
n=\frac{a^{2}+a}{2}+\frac{b^{2}+b}{2}
$$

with (non-negative) integers a, b. Write $4 n+1$ into the sum of two squares, i.e., $4 n+1=x^{2}+y^{2}$ with integers x, y. Express x and y in terms of a and b.

Show, conversely, that if $4 n+1$ is the sum of two squares, then n is the sum of two triangle numbers.

- Answer: We have

$$
4 n+1=2 a^{2}+2 a+2 b^{2}+2 b+1=(a+b+1)^{2}+(a-b)^{2},
$$

so $x=a+b+1, y=a-b$ is a solution.
Conversely, if $4 n+1=x^{2}+y^{2}$. Then x, y must be have different parities and the equations

$$
a+b+1=x, \quad a-b=y,
$$

are solvable for integers a and b :

$$
a=\frac{x+y-1}{2}, \quad b=\frac{x-y-1}{2} .
$$

ANSWERS

NAME: \qquad

FALL 2018 NU PUTNAM SELECTION TEST

Problem A2. Prove that if m, n are positive integers such that $\sqrt{3}>\frac{m}{n}$, then $\sqrt{3} \geq \frac{\sqrt{m^{2}+2}}{n}$.

- Answer: We have

$$
\sqrt{3}>\frac{m}{n} \Rightarrow 3 m^{2}>n^{2} \Rightarrow 3 m^{2} \geq n^{2}+1
$$

We will prove next that in the last expression equality never holds. In fact, we have that $3 m^{2}$ is a multiple of 3 , and n^{2} can only be 0 or 1 modulo 3 , hence $n^{2}+1$ cannot be a multiple of 3 . Consequently $3 m^{2}>n^{2}+1$, and since both sides are integers, $3 m^{2} \geq n^{2}+2$. From here the result follows.

Note: A similar solution can be obtained reasoning modulo 4 using $n^{2} \equiv 0$ or $1(\bmod 4)$.

ANSWERS

NAME: \qquad

FALL 2018 NU PUTNAM SELECTION TEST

Problem A3. Let $P(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+x^{n}$, with $a_{i} \in \mathbb{R}, i \in\{0,1, \ldots, n-1\}$, be a polynomial with roots $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$, and let $x_{i_{0}}=\max _{1 \leq i \leq n} x_{i}$. Prove that if $x \geq x_{i_{0}}$, then $P^{\prime}(x) \geq n \sqrt[n]{(P(x))^{n-1}}$.

- Answer: First, factor the polynomial:

$$
P(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right) .
$$

Note that the hypothesis $x \geq x_{i_{0}}$ implies that all the factors are positive. Next, differentiate:

$$
P^{\prime}(x)=P_{1}(x)+P_{2}(x)+\cdots+P_{n}(x),
$$

where $P_{i}(x)=P(x) /\left(x-x_{i}\right), 1 \leq i \leq n$. By the AM-GM inequality we have

$$
\frac{1}{n} P^{\prime}(n)=\frac{1}{n} \sum_{i=1}^{n} P_{i}(x) \geq\left(\prod_{i=1}^{n} P_{i}(x)\right)^{1 / n}
$$

Also we have

$$
\prod_{i=1}^{n} P_{i}=\frac{(P(x))^{n}}{P(x)}=(P(x))^{n-1}
$$

and the result follows.

NAME:
ANSWERS
\qquad

FALL 2018 NU PUTNAM SELECTION TEST

Problem A4. Define two sequences recursively as follows: $a_{1}=b_{1}=1$, and for $n \geq 1$, $a_{n+1}=2^{a_{n}}, b_{n+1}=3^{b_{n}}$. Note that $a_{3}=4>1=b_{1}^{2}, a_{4}=16>9=b_{2}^{2}, a_{5}=65536>729=b_{3}^{2}$. Prove that in general $a_{n+2}>b_{n}^{2}$ for every $n \geq 1$.

- Answer: We will prove it by induction. We have already checked the cases $n=1,2,3$: $a_{3}=4>1=b_{1}^{2}, a_{4}=16>9=b_{2}^{2}, a_{5}=65536>729=b_{3}^{2}$.

Next, assume $n \geq 3$, and $a_{n+2}>b_{n}^{2}$. Taking into account that $9<2^{27}=2^{b_{3}} \leq 2^{b_{n}}$, and using the induction hypothesis, we get

$$
b_{n+1}^{2}=\left(3^{b_{n}}\right)^{2}=3^{2 b_{n}}=\left(3^{2}\right)^{b_{n}}=9^{b_{n}}<\left(2^{b_{3}}\right)^{b_{n}} \leq\left(2^{b_{n}}\right)^{b_{n}}=2^{b_{n}^{2}}<2^{a_{n+2}}=a_{n+3} .
$$

This completes the induction step, and proves the result.

ANSWERS

NAME: \qquad

FALL 2018 NU PUTNAM SELECTION TEST

Problem A5. Let P_{n} be a regular n-gon ($n \geq 3$) inscribed in a unit circle (radius 1), and let v_{1}, \ldots, v_{n} be its vertices. Let $d_{j k}$ be the distance between vertices v_{j} and v_{k}. Find the sum of the squares of distances between all pairs of vertices $S=\sum_{1 \leq j<k \leq n} d_{j k}^{2}$.

- Answer: The answer is $S=n^{2}$.

We can solve this problem using complex numbers. The vertices of the regular n-gon can be assumed to be the complex points $z_{j}=e^{2 \pi i j / n}, j=0, \ldots, n-1$, and the square of the distance from z_{j} to z_{k} is

$$
\begin{aligned}
\left|z_{k}-z_{j}\right|^{2}=\left|e^{2 \pi i k / n}-e^{2 \pi i j / n}\right|^{2} & =\left(e^{2 \pi k / n}-e^{2 \pi i j / n}\right)\left(e^{-2 \pi i k / n}-e^{-2 \pi i j / n}\right) \\
& =1-e^{2 \pi i(k-j) / n}-e^{2 \pi i(j-k) / n}+1 \\
& =2-2 \Re\left\{e^{2 \pi i(k-j) / n}\right\},
\end{aligned}
$$

where $\Re\{z\}=$ real part of z.
The sum of the squares of the distances from each vertex j to all other vertices is

$$
\begin{aligned}
\sum_{k=0}^{n-1}\left(2-2 \Re\left\{e^{2 \pi i(k-j) / n}\right\}\right) & =2 n-2 \Re\left\{\sum_{\ell=0}^{n-1} e^{2 \pi i \ell / n}\right\} \\
& =2 n-2 \frac{e^{2 \pi i}-1}{e^{2 \pi i / n}-1}=2 n
\end{aligned}
$$

In that sum we include the distance from z_{j} to itself, which is zero, so it does not affect the final result, but makes the computation easier.

Since there are n vertices $z_{j}(j=0, \ldots, n-1)$, multiplying by n we get the sum of the squares of distances, but with each pair of vertices counted twice, so we still must divide the product by 2 and we finally get $S=n^{2}$.

ANSWERS

NAME: \qquad

FALL 2018 NU PUTNAM SELECTION TEST

Problem A6. Suppose that $a_{n}>0$ and $\sum a_{n}$ diverges. Let $s_{n}=\sum_{i=1}^{n} a_{i}$ be the partial sums. For which positive values of p does the series

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{s_{n}^{p}}
$$

converge?

- Answer: The series converges if and only if $p>1$. Suppose that $p>1$. Then for $n \geq 2$,

$$
\frac{a_{n}}{s_{n}^{p}}=\frac{s_{n}-s_{n-1}}{s_{n}^{p}}=\frac{1}{s_{n}^{p}} \int_{s_{n-1}}^{s_{n}} d x \leq \int_{s_{n-1}}^{s_{n}} \frac{d x}{x^{p}}
$$

Hence,

$$
\sum_{n=2}^{\infty} \frac{a_{n}}{s_{n}^{p}} \leq \sum_{n=2}^{\infty} \int_{s_{n-1}}^{s_{n}} \frac{d x}{x^{p}}=\int_{a_{1}}^{\infty} \frac{d x}{x^{p}}<\infty
$$

This shows that the series converges.
Now suppose that $0<p \leq 1$. There is an index ℓ such that $s_{\ell}>1$. We have for $n \geq \ell$,

$$
\frac{a_{n}}{s_{n}^{p}} \geq \frac{a_{n}}{s_{n}} \stackrel{\text { def }}{=} b_{n}
$$

From $1-b_{n}=s_{n-1} / s_{n}$ and $s_{m} \rightarrow \infty$ as $m \rightarrow$ we have

$$
\prod_{n=\ell+1}^{\infty}\left(1-b_{n}\right)=\lim _{m \rightarrow \infty} \frac{s_{\ell}}{s_{m}}=0
$$

This shows that the infinite product diverges, hence the sum $\sum_{n=\ell+1}^{\infty} b_{n}$ also diverges by the convergence theorem for infinite products. ${ }^{1}$ This shows that the series diverges for $0<p \leq 1$.

[^0]NAME:

ANSWERS

FALL 2018 NU PUTNAM SELECTION TEST

Problem A7. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function defined on a finite interval $[a, b]$ such that it is twice continuous differentiable and $f(a)=f(b)=0$.

Show that there is a constant C independent of a, b, and f such that

$$
\int_{a}^{b}|f(x)| d x \leq C\left\|f^{\prime \prime}\right\|_{\infty}(b-a)^{3}
$$

Here $\left\|f^{\prime \prime}\right\|_{\infty}=\sup _{x \in[a, b]}\left|f^{\prime \prime}(x)\right|$.
(Note: Next problem asks you to prove this same inequality for a specific value of C).

- Answer:

Solution 1. Because $f(a)=f(b)$, by Rolle's theorem there is some point $c \in(a, b)$ such that $f^{\prime}(c)=0$. Hence:

$$
\begin{array}{r}
f(x)=f(x)-f(a)=\int_{a}^{x} f^{\prime}(y) d y \\
f^{\prime}(y)=f^{\prime}(y)-f^{\prime}(c)=\int_{c}^{y} f^{\prime \prime}(z) d z \\
|f(x)|=\left|\int_{a}^{x} \int_{c}^{y} f^{\prime \prime}(z) d y d z\right| \leq \int_{a}^{x} \int_{c}^{y}\left|f^{\prime \prime}(z)\right| d y d z \\
\leq\left\|f^{\prime \prime}\right\|_{\infty}(x-a)(y-c) \leq\left\|f^{\prime \prime}\right\|_{\infty}(x-a)(b-a) .
\end{array}
$$

Integrating respect to x we get the result with $C=1 / 2$.
Solution 2. Given any point $x \in(a, b)$, by the Mean Value Theorem there is some point $x_{1} \in(a, x)$ such that

$$
f^{\prime}\left(x_{1}\right)=\frac{f(x)-f(a)}{x-a}=\frac{f(x)}{x-a},
$$

and also there is a point $x_{2} \in(x, b)$ such that

$$
f^{\prime}\left(x_{2}\right)=\frac{f(x)-f(b)}{x-b}=\frac{f(x)}{x-b} .
$$

Next, applying the MVT to f^{\prime}, there is some point $c \in\left(x_{1}, x_{2}\right)$ such that

$$
f^{\prime \prime}(c)=\frac{f^{\prime}\left(x_{2}\right)-f^{\prime}\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f(x)}{x_{2}-x_{1}}\left(\frac{1}{x-b}-\frac{1}{x-a}\right)=\frac{f(x)(b-a)}{\left(x_{2}-x_{1}\right)(x-b)(x-a)},
$$

hence

$$
|f(x)|=\frac{\left|f^{\prime \prime}(c)\right| \cdot\left|x_{2}-x_{1}\right| \cdot(b-x)(x-a)}{b-a} \leq\left\|f^{\prime \prime}\right\|_{\infty}(x-a)(b-x),
$$

Integrating between a and b we get the result with $C=1 / 6$.

NAME:
ANSWERS

FALL 2018 NU PUTNAM SELECTION TEST

Problem A8. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function defined on a finite interval $[a, b]$ such that it is twice continuous differentiable and $f(a)=f(b)=0$.
(a) Show that for every $x \in(a, b)$:

$$
|f(x)| \leq\left\|f^{\prime \prime}\right\|_{\infty} \cdot \frac{(b-x)(x-a)}{2}
$$

Here $\left\|f^{\prime \prime}\right\|_{\infty}=\sup _{x \in[a, b]}\left|f^{\prime \prime}(x)\right|$.
(b) Show that

$$
\int_{a}^{b}|f(x)| d x \leq \frac{1}{12}\left\|f^{\prime \prime}\right\|_{\infty}(b-a)^{3}
$$

(Note: This is the same as the previous problem, but now we require $C=1 / 12$.)

- Answer: For a fixed $x \in[a, b]$ consider the function

$$
h(y)=(b-y)(y-a) f(x)-(b-x)(x-a) f(y)
$$

Then $h(a)=h(b)=h(x)=0$. By Rolle's theorem there is a point $x_{1} \in(a, x)$ such that $h^{\prime}\left(x_{1}\right)=0$, also there is a point $x_{2} \in(x, b)$ such that $h^{\prime}\left(x_{2}\right)=0$, and applying Rolle's theorem again this time to h^{\prime} we get that there is a point $c \in\left(x_{1}, x_{2}\right)$ such that $h^{\prime \prime}(c)=0$.

We have

$$
0=h^{\prime \prime}(c)=-2 f(x)-(b-x)(x-a) f^{\prime \prime}(c)
$$

Hence $2 f(x)=-(b-x)(x-a) f^{\prime \prime}(c)$, and from here we get : $|f(x)| \leq\left\|f^{\prime \prime}\right\|_{\infty}(b-x)(x-a) / 2$. This shows (a). Integrating we obtain (b).

Note: The constant $1 / 12$ is best possible, as shown by the function $f(x)=(b-x)(x-a)$, for which the inequality becomes equality.

[^0]: ${ }^{1}$ For real numbers with $0 \leq a_{n} \leq 1$, the infinite product $\prod_{n=1}^{\infty}\left(1-a_{n}\right)$ converges to a nonzero real number if and only if the series $\sum_{n=1}^{\infty} a_{n}$ converges.

