NAME: \qquad

FALL 2018 NU PUTNAM SELECTION TEST

Problem A1. Suppose that a non-negative integer n is the sum of two triangular numbers

$$
n=\frac{a^{2}+a}{2}+\frac{b^{2}+b}{2}
$$

with (non-negative) integers a, b. Write $4 n+1$ into the sum of two squares, i.e., $4 n+1=x^{2}+y^{2}$ with integers x, y. Express x and y in terms of a and b.

Show, conversely, that if $4 n+1$ is the sum of two squares, then n is the sum of two triangle numbers.

NAME: \qquad
FALL 2018 NU PUTNAM SELECTION TEST

Problem A2. Prove that if m, n are positive integers such that $\sqrt{3}>\frac{m}{n}$, then $\sqrt{3} \geq \frac{\sqrt{m^{2}+2}}{n}$.

NAME: \qquad
FALL 2018 NU PUTNAM SELECTION TEST

Problem A3. Let $P(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+x^{n}$, with $a_{i} \in \mathbb{R}, i \in\{0,1, \ldots, n-1\}$, be a polynomial with roots $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$, and let $x_{i_{0}}=\max _{1 \leq i \leq n} x_{i}$. Prove that if $x \geq x_{i_{0}}$, then $P^{\prime}(x) \geq n \sqrt[n]{(P(x))^{n-1}}$.

NAME: \qquad

FALL 2018 NU PUTNAM SELECTION TEST

Problem A4. Define two sequences recursively as follows: $a_{1}=b_{1}=1$, and for $n \geq 1$, $a_{n+1}=2^{a_{n}}, b_{n+1}=3^{b_{n}}$. Note that $a_{3}=4>1=b_{1}^{2}, a_{4}=16>9=b_{2}^{2}, a_{5}=65536>729=b_{3}^{2}$. Prove that in general $a_{n+2}>b_{n}^{2}$ for every $n \geq 1$.

NAME: \qquad

FALL 2018 NU PUTNAM SELECTION TEST

Problem A5. Let P_{n} be a regular n-gon $(n \geq 3)$ inscribed in a unit circle (radius 1), and let v_{1}, \ldots, v_{n} be its vertices. Let $d_{j k}$ be the distance between vertices v_{j} and v_{k}. Find the sum of the squares of distances between all pairs of vertices $S=\sum_{1 \leq j<k \leq n} d_{j k}^{2}$.

NAME: \qquad
FALL 2018 NU PUTNAM SELECTION TEST

Problem A6. Suppose that $a_{n}>0$ and $\sum a_{n}$ diverges. Let $s_{n}=\sum_{i=1}^{n} a_{i}$ be the partial sums. For which positive values of p does the series

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{s_{n}^{p}}
$$

converge?

NAME: \qquad

FALL 2018 NU PUTNAM SELECTION TEST

Problem A7. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function defined on a finite interval $[a, b]$ such that it is twice continuous differentiable and $f(a)=f(b)=0$.

Show that there is a constant C independent of a, b, and f such that

$$
\int_{a}^{b}|f(x)| d x \leq C\left\|f^{\prime \prime}\right\|_{\infty}(b-a)^{3}
$$

Here $\left\|f^{\prime \prime}\right\|_{\infty}=\sup _{x \in[a, b]}\left|f^{\prime \prime}(x)\right|$.
(Note: Next problem asks you to prove this same inequality for a specific value of C).

NAME: \qquad

FALL 2018 NU PUTNAM SELECTION TEST

Problem A8. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function defined on a finite interval $[a, b]$ such that it is twice continuous differentiable and $f(a)=f(b)=0$.
(a) Show that for every $x \in(a, b)$:

$$
|f(x)| \leq\left\|f^{\prime \prime}\right\|_{\infty} \cdot \frac{(b-x)(x-a)}{2}
$$

Here $\left\|f^{\prime \prime}\right\|_{\infty}=\sup _{x \in[a, b]}\left|f^{\prime \prime}(x)\right|$.
(b) Show that

$$
\int_{a}^{b}|f(x)| d x \leq \frac{1}{12}\left\|f^{\prime \prime}\right\|_{\infty}(b-a)^{3} .
$$

(Note: This is the same as the previous problem, but now we require $C=1 / 12$.)

