Preliminary Exam in Algebra Fall 2023

INSTRUCTIONS:

- Do all of the following problems.
- In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas. But if a problem asks you to state or prove a theorem or a formula, you need to provide the full details.

Part I

Do all of the following three problems.
(1) (a) For \mathbb{k} a field, prove that the group B of upper triangular matrices in $\mathrm{GL}_{n}(\mathbb{k})$ is solvable.
(b) Find a p-Sylow subgroup of $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ and prove it is indeed p-Sylow.
(2) (a) Recall that an associative ring R is left (respectively, right) semisimple if R is a direct sum of simple left (respectively, right) R-modules. Prove that R is left semisimple if and only if it is right semisimple.
(b) Let $R=\mathbb{C}[G]$ be the group ring on a finite abelian group G. Prove that R is isomorphic as a ring to a product of fields \mathbb{C}.
(c) For G a finite group, prove that every finite-dimensional $\mathbb{C}[G]$-module V is isomorphic to a direct sum of simple $\mathbb{C}[G]$-modules.
(3) (a) Let $\iota: H \subset G$ be a subgroup of finite index. Define the transfer map on group homologies

$$
\operatorname{tr}: \mathrm{H}_{*}(G, \mathbb{Z}) \rightarrow \mathrm{H}_{*}(H, \mathbb{Z}),
$$

and prove that the resulting composite map $l_{*} \circ \operatorname{tr}$ is multiplication by [G : H].
(b) Consider the semidirect product of groups $\mathbb{Z}^{\times} \ltimes \mathbb{Z}$, where the element $-1 \in \mathbb{Z}^{\times}$acts on the additive group \mathbb{Z} as multiplication. Calculate the group homology

$$
\mathrm{H}_{*}\left(\mathbb{Z}^{\times} \ltimes \mathbb{Z}, \mathbb{F}_{p}\right)
$$

for all odd primes p. Here the action of the group on \mathbb{F}_{p} is trivial.

Part II

Do all of the following three problems.
(1) Let \mathbb{k} be any field. Find all the solutions $f(x)$ of the system of congruences

$$
\begin{gathered}
f(x) \equiv x^{2}+1 \quad \bmod x^{3}+x+1 \\
f(x) \equiv x+1 \quad \bmod x^{2}-1
\end{gathered}
$$

in $\mathbb{k}[x]$.
(2) Write down all possible expressions for the minimal polynomial of any primitive root of unity of order 15 in the algebraic closure $\overline{\mathbb{k}}$ where
a) $\mathbb{k}=\mathbb{Q}$;
b) $\mathbb{k}=\mathbb{F}_{2}$.
(3) Show that

$$
f(x)=x^{5}-21 x^{2}+6
$$

is irreducible over \mathbb{Q}. Compute the Galois group of its splitting field over \mathbb{Q}.

Part III

Do all of the following three problems.
(1) Let $\mathfrak{m} \subset R$ and $\mathfrak{n} \subset S$ be local Noetherian rings, and let $f: R \rightarrow S$ be a finite ring homomorphism such that:
(a) $f(\mathfrak{m}) \subset \mathfrak{n}$ and the resulting map of residue fields $\kappa(\mathfrak{m}) \rightarrow \kappa(\mathfrak{n})$ is an isomorphism;
(b) the map of Zariski cotangent spaces $\mathfrak{m} / \mathfrak{m}^{2} \rightarrow \mathfrak{n} / \mathfrak{n}^{2}$ is surjective.

Prove that $f: R \rightarrow S$ is surjective.
(2) Consider the ring $R=\mathbb{C}[x, y] /\left(y^{2}-x^{3}+a x\right)$ for $a \in \mathbb{C}$. For each value of a determine:
(a) the Krull dimension Kr.dim R;
(b) whether for every maximal ideal $\mathfrak{m} \subset R$ there is equality

$$
\operatorname{dim}_{\kappa(\mathfrak{m})} \mathfrak{m} / \mathfrak{m}^{2}=\operatorname{Kr} \cdot \operatorname{dim} R_{\mathfrak{m}}
$$

where $\kappa(\mathfrak{m})$ is the residue field at \mathfrak{m}. (I.e., determine whether $R_{\mathfrak{m}}$ is a regular local ring.)
(3) Let R be a Noetherian ring and M a finitely-generated R-module. Give a complete proof of the following: There exists a finite sequence of inclusions of R modules

$$
0=M_{0} \subset M_{1} \subset \ldots \subset M_{n}=M
$$

such that for each $0 \leq i<n$ there exists an isomorphism of R-modules

$$
M_{i+1} / M_{i} \cong R / \mathfrak{p}_{i}
$$

for some $\mathfrak{p}_{i} \subset R$ a prime ideal.

