PRELIMINARY EXAM IN ALGEBRA FALL 2023

INSTRUCTIONS:

- Do **all** of the following problems.
- In each problem, full credit requires proving that your answer is correct. You may quote and use theorems and formulas. But if a problem asks you to state or prove a theorem or a formula, you need to provide the full details.

Part I

Do **all** of the following three problems.

- (1) (a) For \Bbbk a field, prove that the group *B* of upper triangular matrices in $GL_n(\Bbbk)$ is solvable.
 - (b) Find a *p*-Sylow subgroup of $GL_n(\mathbb{F}_p)$ and prove it is indeed *p*-Sylow.
- (2) (a) Recall that an associative ring *R* is left (respectively, right) semisimple if *R* is a direct sum of simple left (respectively, right) *R*-modules. Prove that *R* is left semisimple if and only if it is right semisimple.
 - (b) Let $R = \mathbb{C}[G]$ be the group ring on a finite abelian group *G*. Prove that *R* is isomorphic as a ring to a product of fields \mathbb{C} .
 - (c) For *G* a finite group, prove that every finite-dimensional $\mathbb{C}[G]$ -module *V* is isomorphic to a direct sum of simple $\mathbb{C}[G]$ -modules.
- (3) (a) Let $\iota : H \subset G$ be a subgroup of finite index. Define the transfer map on group homologies

$$\operatorname{tr}: \operatorname{H}_*(G, \mathbb{Z}) \to \operatorname{H}_*(H, \mathbb{Z})$$
,

and prove that the resulting composite map $\iota_* \circ \text{tr}$ is multiplication by [G : H].

(b) Consider the semidirect product of groups $\mathbb{Z}^{\times} \ltimes \mathbb{Z}$, where the element $-1 \in \mathbb{Z}^{\times}$ acts on the additive group \mathbb{Z} as multiplication. Calculate the group homology

$$\mathrm{H}_*(\mathbb{Z}^{\times}\ltimes\mathbb{Z},\mathbb{F}_p)$$

for all odd primes *p*. Here the action of the group on \mathbb{F}_p is trivial.

Part II

Do **all** of the following three problems.

(1) Let k be any field. Find all the solutions f(x) of the system of congruences

$$f(x) \equiv x^2 + 1 \mod x^3 + x + 1;$$

$$f(x) \equiv x + 1 \mod x^2 - 1$$

in $\mathbb{k}[x]$.

(2) Write down all possible expressions for the minimal polynomial of any primitive root of unity of order 15 in the algebraic closure \overline{k} where

a)
$$\mathbb{k} = \mathbb{Q}$$
;
b) $\mathbb{k} = \mathbb{F}_2$.

(3) Show that

$$f(x) = x^5 - 21x^2 + 6$$

is irreducible over \mathbb{Q} . Compute the Galois group of its splitting field over \mathbb{Q} .

Part III

Do **all** of the following three problems.

- (1) Let $\mathfrak{m} \subset R$ and $\mathfrak{n} \subset S$ be local Noetherian rings, and let $f : R \to S$ be a finite ring homomorphism such that:
 - (a) $f(\mathfrak{m}) \subset \mathfrak{n}$ and the resulting map of residue fields $\kappa(\mathfrak{m}) \to \kappa(\mathfrak{n})$ is an isomorphism;
 - (b) the map of Zariski cotangent spaces $\mathfrak{m}/\mathfrak{m}^2 \to \mathfrak{n}/\mathfrak{n}^2$ is surjective.

Prove that $f : R \to S$ is surjective.

- (2) Consider the ring $R = \mathbb{C}[x, y]/(y^2 x^3 + ax)$ for $a \in \mathbb{C}$. For each value of *a* determine:
 - (a) the Krull dimension Kr.dim *R*;
 - (b) whether for every maximal ideal $\mathfrak{m} \subset R$ there is equality

$$\dim_{\kappa(\mathfrak{m})}\mathfrak{m}/\mathfrak{m}^2 = \operatorname{Kr.dim} R_\mathfrak{m}$$

where $\kappa(\mathfrak{m})$ is the residue field at \mathfrak{m} . (I.e., determine whether $R_{\mathfrak{m}}$ is a regular local ring.)

(3) Let *R* be a Noetherian ring and *M* a finitely-generated *R*-module. Give a complete proof of the following: There exists a finite sequence of inclusions of *R*-modules

$$0 = M_0 \subset M_1 \subset \ldots \subset M_n = M$$

such that for each $0 \le i < n$ there exists an isomorphism of *R*-modules

$$M_{i+1}/M_i \cong R/\mathfrak{p}_i$$

for some $\mathfrak{p}_i \subset R$ a prime ideal.