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1. Cheeger-Gromoll Splitting Theorem

There is a version of the splitting theorem for Riemannian manifolds that have a

Ricci curvature lower bound, i.e. RicMn ≥ −(n− 1)δ for δ > 0. For intuition, suppose

RicMn ≥ −(n − 1). If we rescale the metric to δ−2g, then RicMn ≥ −(n − 1)δ2. Let

γ : [−L
2
, −L

2
] → M be a geodesic segment of length L ≥ 1. The distance is rescaled by

a factor of δ−1, where 0 < δ << 1, 1 << δ−1L. Now the ball Bδ(γ(0)) in the origi-

nal metric is rescaled to be B1(γ(0)). Thus, γ now looks like a line in a noncompact

manifold with non-negative Ricci curvature, the setting in which the Cheeger-Gromoll

splitting theorem applies. This suggests Mn should split in some sense. The almost

splitting theorem says that if the Ricci curvature is ”almost nonnegative”, and one

has a ”long enough, minimizing” geodesic, then a ball BR(p) centered at p ∈ M is

Gromov-Hausdorff close to a ball in a product space R×X, where X can be taken to

be a length space.

For notation, let Ψ = Ψ(ϵ1, . . . , ϵk|c1, . . . , ck) denote a non-negative function such that

limϵ1,...,ϵk→0Ψ = 0 for fixed c1, . . . , ck. Fix two points q± ∈ M . Define the excess

function

E(x) = d(x, q+) + d(x, q) − d(q+, q−)

E is non-negative with Lip E ≤ 2. The excess function measure how much the segments

connecting q± to x fail to be length minimizing. We will work under the following

assumptions,

Ric ≥ −(n− 1)δ,(1.1)

d(p, q±) ≥ L,(1.2)

E(p) ≤ ϵ,(1.3)
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The second and third assumptions together suggest the existence of a ”long enough,

minimizing” geodesic. We first prove the following useful theorem due to Abresch-

Gromoll.

Theorem 1.1. (Abresch-Gromoll) Assuming (1)-(3), then

E ≤ Ψ(δ, L−1, ϵ|n,R) (on BR(p))

Proof: Let Ψ1 = Ψ(δ, L−1|n,R). By Laplacian comparison (∆r(x) ≤ (n − 1)
sn′

−δ(r)

sn−δ(r)
),

we have

∆E ≤ Ψ1 (on B2R+1(p))

Set d(x, p) = r. Fix 0 < η < R. We can assume ϵ is chosen to satisfy

ϵ ≤ Ψ1LR+1(R) ≤ ΨLR+1(η)

where L is the comparison function of Ch. 4 in [1]. In particular, LR+1(R + 1) =

0,L′
R+1 ≤ 0 on [0, R + 1] implies LR+1(R) ≥ 0 is nonnegative. The second inequality

follows since L is monotonically decreasing. Notice that p ∈ Aη,R+1(x). We see that

E(p) ≤ ϵ ≤ Ψ1LR+1(η) ≤ ΨLR+1(r)

By Theorem 8.12 of [1], for all r with η ≤ r < R, we have

(1.4) E(x) ≤ Ψ1LR+1(η) + 2η

Since Lip E ≤ 2, for all r we have E(x) ≤ E(p) + 2r. Since E(p) ≤ ϵ ≤ Ψ1LR+1(η),

we have

E(x) ≤ E(p) + 2r ≤ Ψ1LR+1(η) + 2r ≤ Ψ1LR+1(η) + 2η

Therefore, we have (4) for all r ≤ η and hence for all r ≤ R. If we choose η to satisfy

Ψ1LR+1(η) = 2η

(since LR+1(η) ≥ 0), then Ψ1 → 0 implies η → 0 (furthermore as η → 0, since

L′
R+1 ≤ 0 on [0, R+ 1], this means Ψ1 → 0). Thus, the desired statement follows from

(1). □

Thus, if the excess function is sufficiently small at p ∈ M , then it is also small in

the ball BR(p). The reason for taking Ψ = Ψ(δ, L−1, ϵ|n,R) is that we will eventually

consider a sequence of manifolds Mn
i with RicMn

i
≥ −(n− 1)δi and δi → 0, and the Mi

containing longer and longer geodesics (L−1 → 0).

Let γ± denote minimal geodesics from q± to p. Define b±(x) = d(x, q±) − d(p, q±),



CHEEGER-GROMOLL SPLITTING THEOREM 3

a function that is similar in spirit to the Busemann function. Let b± be the harmonic

function satisfying

∆b± = 0 (on BR(p))

b±|∂BR(p) = b±

The function b± will serve as our Busemann function-equivalent in the almost setting.

We will prove various average integral estimates relating b± to b± on balls centered at

p. The first lemma shows that b± can be uniformly approximated by b± on BR(p).

Lemma 1.2. Assuming (1)-(3), then

|b± − b±| ≤ Ψ (on BR(p)).

Proof: By Laplacian comparison, ∆(b±−b±) = ∆b± ≤ Ψ. By Lemma 8.5 of [1], setting

t = 0,

b±−b± ≥ ΨLR2
(R)+max∂BR(p)(b±−b±−ΨLR2

) = LR2
(R)+max∂BR(p)(−ΨLR2

) ≥ −Ψ.

We have b+(x) + b−(x) = E(x)− E(p). By Theorem 1, this gives −ϵ ≤ b+ − b− ≤ Ψ.

Therefore, by the minimum principle, −ϵ ≤ b+ + b−. Combining these observations,

b+ −Ψ ≤ b+

≤ −b− +Ψ

≤ −b− + 2Ψ

≤ b+ + 2Ψ + ϵ

Thus, b+ − b+ ≤ 2Ψ + ϵ = Ψ(δ, L−1, ϵ|n,R) □

Recall that in the splitting theorem, we used the minimum principle to show b++b− ≡
0. In the almost splitting theorem, we showed ϵ ≤ b++b− above. We have the following

L2 gradient estimate.

Lemma 1.3. Assuming (1)-(3), then

BR(p)|∇b+ −∇b+|2 ≤ Ψ

Proof: Using integration by parts and b+ = b+ on ∂BR(p), we have

BR(p)|∇b+ −∇b+|2 = −BR(p)∆(b+ − b+)(b+ − b+)

≤BR(p) |∆(b+ − b+)(b+ − b+)|

≤ ΨBR(p)|∆(b+ − b+)|, (Lemma 1)

= ΨBR(p)|∆b+|

≤ Ψ
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□

In the splitting theorem, we proved the Busemann function was linear, i.e. Hess b+ ≡
0. In the almost setting, we instead provide an average L2 estimate on Hessb+ .

Lemma 1.4. Assuming (1)-(3), then

BR/2(p)|Hessb+|2 ≤ Ψ

Proof: By Bochner’s formula,

1

2
∆(|∇b+|2) = |Hessb+ |2 + Ric(∇b+,∇b+)

Using the cutoff function ϕ constructed in Theorem 8.16 of [1], with ϕ|BR/2(p) ≡ 1, |∆ϕ| ≤
c(n), we have

BR/2(p)|Hessb+ |2 ≤BR(p) ϕ|Hessb+|2

≤BR(p)
1

2
ϕ∆(|∇b+|2 − 1) + (n− 1)δ|∇b+|2, (Ric bound)

≤BR(p)
1

2
|∆ϕ|||∇b+|2 − 1|+ (n− 1)δ|∇b+|2, (integration by parts)

≤ c(n)BR(p)||∇b+|2 − 1|+ (n− 1)δ|∇b+|2

≤ Ψ, (Lemma 2)

□

Next, we show a quantitative version of the Pythagorean theorem.

Lemma 1.5. Assume (1)-(3). Let x, z, w ∈ BR
8
(p), with x ∈ b−1

+ (a), and z a point on

b−1
+ (a) closest to w. Then

|d(x, z)2 + d(z, w)2 − d(x,w)2| ≤ Ψ

Proof: We apply the iterated segment inequality, volume comparison, and Lemma 3 to

show there exist x∗, z∗, w∗ such that,

d(x∗, x) ≤ Ψ

d(z∗, z) ≤ Ψ

d(w∗, w) ≤ Ψ

and in addition, if σ : [0, e] → M is minimal from z∗ to w∗, then,

(1.5)

∫
U

∫ l(s)

0

|Hessb+(τs(t))|dtds ≤ Ψ
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, where U ⊂ [0, e] is of full measure, such that for all s ∈ U , the minimal geodesic

τs : [0, l(s)] → M from x∗ to σ(s) is unique. By the segment inequality,∫
B(x,ϵ)×B(p,R

4
)

F|Hess b+|(x, r)dxdr ≤ CR(|B(x, ϵ)|+ |B(p,
R

4
)|)

∫
B(p,R

2
)

|Hess b+|

By Markov’s inequality, there exists x∗ ∈ B(x, ϵ) such that,∫
B(p,R

4
)

F|Hess b+|(x
∗, r)dr ≤

CR(|B(x, ϵ)|+ |B(p, R
4
)|)

|B(x, ϵ)|

∫
B(p,R

2
)

|Hess b+|

Now, again by the segment inequality,∫
B(z,ϵ)×B(w,ϵ)

FF|Hess b+|(x∗,·)(z, w)dzdw ≤ CR(|B(z, ϵ)|+|B(w, ϵ)|)
∫
B(p,R

4
)

F|Hess b+|(x
∗, r)dr

Combined with the above and Markov’s inequality again, there exists z∗ ∈ B(z, ϵ), w∗ ∈
B(w, ϵ) such that,

FF|Hess b+|(x∗,·)(z
∗, w∗) ≤

C2R2(|B(y, ϵ)|+ |B(z, ϵ)|)(|B(x, ϵ)|+ |B(p, R
2
)|)

|B(x, ϵ)||B(z, ϵ)||B(w, ϵ)|

∫
B(p,R

2
)

|Hess b+|

By relative volume comparison and Lemma 3, we therefore have,

FF|Hess b+|(x∗,·)(z
∗, w∗) =

∫
U

∫ l(s)

0

|Hessb+(τs(t))|dtds ≤ Ψ

Therefore, we have the desired x∗, z∗, w∗. Similarly, we apply the segment inequality to

the function, F||∇b+|−1| to get,

(1.6)

∫ e

0

||∇b+(σ(s))| − 1|ds ≤ Ψ

The Abresch-Gromoll inequality implies |E(z) − E(x)| ≤ Ψ, which means |b+(z) −
b+(x)| − d(z, x) ≤ Ψ. By Lemma 1,

(1.7) |d(z, x)− (b+(z)− b+(x))| ≤ Ψ

Equation (7), Lemma 1, and the Cheng-Yau gradient estimate (supBR(p) |∇b+| ≤ C)

give

(1.8)

∫ e

0

|∇b+(σ(s))− σ′(s)|ds ≤ Ψ
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Recall σ′(s) = ∇b+(σ(s)), since b+ is a distance function. So (5) provides an integral

estimate of the gradients along a geodesic. Furthermore, notice that for all t ∈ [0, l(s)],

|⟨∇b+(τs(t)), τ
′
s(t)⟩ − ⟨∇b+(τs(l(s))), τ

′
s(l(s))⟩| = |

∫ l(s)

t

d

du
⟨∇b+(τs(u)), τ

′
s(u)⟩du|

= |
∫ l(s)

t

τ ′s · ⟨∇b+(τs(u)), τ
′
s(u)⟩ds|, (τ ′s =

d

du
)

= |
∫ l(s)

t

Hess b+(τ
′
s(u), τ

′
s(u))du|, (since ∇τ ′sτ

′
s = 0)

≤
∫ l(s)

0

|Hess b+(τs(u))|du

Integrating both sides by U , we get

(1.9)∫
U

|⟨∇b+(τs(t), τ
′
s(t)⟩ − ⟨∇b+(τs(l(s))), τ

′
s(l(s))⟩| ≤

∫
U

∫ l(s)

0

|Hess b+(τs(u))|duds ≤ Ψ

We now have the tools to prove the quantitative Pythagorean theorem,

1

2
d(z, w)2 =

1

2
d(z∗, w∗)2 ±Ψ =

∫ e

0

sds±Ψ

=

∫ e

0

b+(σ(s))− b+(σ(0))ds±Ψ, (Lemma 1)

=

∫
U

b+(τs(l(s)))− b+(τs(0))ds±Ψ

(τ(s) = σ(s), [0, e] ⊂ U full measure)

=

∫
u

∫ l(s)

0

⟨∇b+(τs(t)), τ
′
s(t)⟩dtds±Ψ

(⟨b+(τs(t)), τ
′
s(t)⟩ =

d

dt
b+(τs(t)))

=

∫
u

∫ l(s)

0

⟨∇b+(τs(l(s))), τ
′
s(l(s))⟩dtds±Ψ, (by (9))

=

∫
u

⟨∇b+(τs(l(s))), τ
′
s(l(s))⟩l(s)ds±Ψ
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The above quantity in the last line is,∫
u

⟨∇b+(τs(l(s))), τ
′
s(l(s))⟩l(s)ds =

∫
u

⟨∇b+(σ(s))), τ
′
s(l(s))⟩l(s)ds, (τs(l(s)) = σ(s))

=

∫
u

⟨σ′(s), τ ′s(l(s))⟩l(s)ds, (by (8))

=

∫
U

l′(s)l(s)ds±Ψ

(1st variation of arc length ⇒ l′(s) = ⟨σ′(s), τ ′s(l(s))⟩)

=
1

2
l2(e)− 1

2
l2(0)±Ψ

=
1

2
d(x,w)2 − 1

2
d(x, z)2 ±Ψ

□

The quantitative Pythagorean theorem allows us to prove the quantitative version

of the almost splitting theorem.

Theorem 1.6. Assuming (1)-(3), there is a length space X such that for some ball

BR/4((0, x)) ⊂ R×X with the product metric, we have,

dGH(BR/4(p), BR/4((0, x))) ≤ Ψ

Proof: By the quantitative Pythagorean theorem, BR
4
(p) is Ψ-Gromov-Hausdorff close

to a subset of BR
4
((0, x)) ⊂ R× b−1

+ (0). By the Abresch-Gromoll inequality, the subset

can be taken to be the whole ball BR
4
((0, x)). However, the metric space b−1

+ (0) with

the inherited metric from M is not a length space. To get a length space X, take

BR
4
(pi) ∈ Mn

i , where RicMn
i

≥ −(n − 1)δi and δi → 0; let Mn
i = (M, δ−1

i g). By

Gromov’s compactness theorem, the sequence BR
4
(pi) subconverges. It must subconverge

to a ball in a product space R×X by the theorem. Since BR
4
(pi) is a length space, and

the limit of length spaces is a length space, X must be a length space. □

Theorem 2 is equivalent to the splitting theorem extending to Gromov-Hausdorff

limit spaces.

Theorem 1.7. Let Mn
i

dGH−−→ Y satisfy RicMn
i
≥ −(n − 1)δi, where δi → 0. If Y con-

tains a line, then Y splits as an isometric product Y = R×X, for some length space X.

Proof: If Y contains a line, the Mn
i must contain minimizing geodesics γi of length

Li, where Li → ∞. By Theorem 2, there exists a ball BRi
(pi) ∈ Mn

i that is Ψ-GH close

to BRi
((0, xi)) ⊂ R × Xi, where Xi is some length space. Since the Ri → ∞, in the

limit Y splits isometrically as R×X, for some length space X. □
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