CHEEGER-GROMOLL SPLITTING THEOREM

BENJAMIN ZHOU

Contents

1. Cheeger-Gromoll Splitting Theorem 1

References

1. Cheeger-Gromoll Splitting Theorem

There is a version of the splitting theorem for Riemannian manifolds that have a Ricci curvature lower bound, i.e. $\operatorname{Ric}_{M^{n}} \geq-(n-1) \delta$ for $\delta>0$. For intuition, suppose $\operatorname{Ric}_{M^{n}} \geq-(n-1)$. If we rescale the metric to $\delta^{-2} g$, then $\operatorname{Ric}_{M^{n}} \geq-(n-1) \delta^{2}$. Let $\gamma:\left[\frac{-L}{2}, \frac{-L}{2}\right] \rightarrow M$ be a geodesic segment of length $L \geq 1$. The distance is rescaled by a factor of δ^{-1}, where $0<\delta \ll 1,1 \ll \delta^{-1} L$. Now the ball $B_{\delta}(\gamma(0))$ in the original metric is rescaled to be $B_{1}(\gamma(0))$. Thus, γ now looks like a line in a noncompact manifold with non-negative Ricci curvature, the setting in which the Cheeger-Gromoll splitting theorem applies. This suggests M^{n} should split in some sense. The almost splitting theorem says that if the Ricci curvature is "almost nonnegative", and one has a "long enough, minimizing" geodesic, then a ball $B_{R}(p)$ centered at $p \in M$ is Gromov-Hausdorff close to a ball in a product space $\mathbb{R} \times X$, where X can be taken to be a length space.

For notation, let $\Psi=\Psi\left(\epsilon_{1}, \ldots, \epsilon_{k} \mid c_{1}, \ldots, c_{k}\right)$ denote a non-negative function such that $\lim _{\epsilon_{1}, \ldots, \epsilon_{k} \rightarrow 0} \Psi=0$ for fixed c_{1}, \ldots, c_{k}. Fix two points $q_{ \pm} \in M$. Define the excess function

$$
E(x)=d\left(x, q_{+}\right)+d\left(x, q_{)}-d\left(q_{+}, q_{-}\right)\right.
$$

E is non-negative with Lip $E \leq 2$. The excess function measure how much the segments connecting $q_{ \pm}$to x fail to be length minimizing. We will work under the following assumptions,

$$
\begin{align*}
\text { Ric } & \geq-(n-1) \delta, \tag{1.1}\\
d\left(p, q_{ \pm}\right) & \geq L \tag{1.2}\\
E(p) & \leq \epsilon \tag{1.3}
\end{align*}
$$

The second and third assumptions together suggest the existence of a "long enough, minimizing" geodesic. We first prove the following useful theorem due to AbreschGromoll.

Theorem 1.1. (Abresch-Gromoll) Assuming (1)-(3), then

$$
E \leq \Psi\left(\delta, L^{-1}, \epsilon \mid n, R\right) \quad\left(\text { on } B_{R}(p)\right)
$$

Proof: Let $\Psi_{1}=\Psi\left(\delta, L^{-1} \mid n, R\right)$. By Laplacian comparison $\left(\Delta r(x) \leq(n-1) \frac{s n_{-\delta}^{\prime}(r)}{s n_{-\delta}(r)}\right)$, we have

$$
\Delta E \leq \Psi_{1} \quad\left(\text { on } B_{2 R+1}(p)\right)
$$

Set $d(x, p)=r$. Fix $0<\eta<R$. We can assume ϵ is chosen to satisfy

$$
\epsilon \leq \Psi_{1} \underline{L}_{R+1}(R) \leq \Psi \underline{L}_{R+1}(\eta)
$$

where \underline{L} is the comparison function of Ch. 4 in [1]. In particular, $\underline{L}_{R+1}(R+1)=$ $0, \underline{L}_{R+1}^{\prime} \leq 0$ on $[0, R+1]$ implies $\underline{L}_{R+1}(R) \geq 0$ is nonnegative. The second inequality follows since \underline{L} is monotonically decreasing. Notice that $p \in A_{\eta, R+1}(x)$. We see that

$$
E(p) \leq \epsilon \leq \Psi_{1} \underline{L}_{R+1}(\eta) \leq \Psi \underline{L}_{R+1}(r)
$$

By Theorem 8.12 of [1], for all r with $\eta \leq r<R$, we have

$$
\begin{equation*}
E(x) \leq \Psi_{1} \underline{L}_{R+1}(\eta)+2 \eta \tag{1.4}
\end{equation*}
$$

Since Lip $E \leq 2$, for all r we have $E(x) \leq E(p)+2 r$. Since $E(p) \leq \epsilon \leq \Psi_{1} \underline{L}_{R+1}(\eta)$, we have

$$
E(x) \leq E(p)+2 r \leq \Psi_{1} \underline{L}_{R+1}(\eta)+2 r \leq \Psi_{1} \underline{L}_{R+1}(\eta)+2 \eta
$$

Therefore, we have (4) for all $r \leq \eta$ and hence for all $r \leq R$. If we choose η to satisfy

$$
\Psi_{1} \underline{L}_{R+1}(\eta)=2 \eta
$$

(since $\underline{L}_{R+1}(\eta) \geq 0$), then $\Psi_{1} \rightarrow 0$ implies $\eta \rightarrow 0$ (furthermore as $\eta \rightarrow 0$, since $\underline{L}_{R+1}^{\prime} \leq 0$ on $[0, R+1]$, this means $\left.\Psi_{1} \rightarrow 0\right)$. Thus, the desired statement follows from (1).

Thus, if the excess function is sufficiently small at $p \in M$, then it is also small in the ball $B_{R}(p)$. The reason for taking $\Psi=\Psi\left(\delta, L^{-1}, \epsilon \mid n, R\right)$ is that we will eventually consider a sequence of manifolds M_{i}^{n} with $\operatorname{Ric}_{M_{i}^{n}} \geq-(n-1) \delta_{i}$ and $\delta_{i} \rightarrow 0$, and the M_{i} containing longer and longer geodesics $\left(L^{-1} \rightarrow 0\right)$.

Let $\gamma_{ \pm}$denote minimal geodesics from $q_{ \pm}$to p. Define $b_{ \pm}(x)=d\left(x, q_{ \pm}\right)-d\left(p, q_{ \pm}\right)$,
a function that is similar in spirit to the Busemann function. Let $\mathbf{b}_{ \pm}$be the harmonic function satisfying

$$
\begin{aligned}
\Delta \mathbf{b}_{ \pm} & =0 \quad\left(\text { on } B_{R}(p)\right) \\
\left.\mathbf{b}_{ \pm}\right|_{\partial B_{R}(p)} & =b_{ \pm}
\end{aligned}
$$

The function $\mathbf{b}_{ \pm}$will serve as our Busemann function-equivalent in the almost setting. We will prove various average integral estimates relating $b_{ \pm}$to $\mathbf{b}_{ \pm}$on balls centered at p. The first lemma shows that $b_{ \pm}$can be uniformly approximated by $\mathbf{b}_{ \pm}$on $B_{R}(p)$.

Lemma 1.2. Assuming (1)-(3), then

$$
\left|b_{ \pm}-\boldsymbol{b}_{ \pm}\right| \leq \Psi \quad\left(\text { on } B_{R}(p)\right)
$$

Proof: By Laplacian comparison, $\Delta\left(b_{ \pm}-\boldsymbol{b}_{ \pm}\right)=\Delta b_{ \pm} \leq \Psi$. By Lemma 8.5 of [1], setting $t=0$,
$b_{ \pm}-\boldsymbol{b}_{ \pm} \geq \Psi \underline{L}_{R_{2}}(R)+\max _{\partial B_{R}(p)}\left(b_{ \pm}-\boldsymbol{b}_{ \pm}-\Psi \underline{L}_{R_{2}}\right)=\underline{L}_{R_{2}}(R)+\max _{\partial B_{R}(p)}\left(-\Psi \underline{L}_{R_{2}}\right) \geq-\Psi$.
We have $b_{+}(x)+b_{-}(x)=E(x)-E(p)$. By Theorem 1, this gives $-\epsilon \leq b_{+}-b_{-} \leq \Psi$. Therefore, by the minimum principle, $-\epsilon \leq \boldsymbol{b}_{+}+\boldsymbol{b}_{-}$. Combining these observations,

$$
\begin{aligned}
\boldsymbol{b}_{+}-\Psi & \leq b_{+} \\
& \leq-b_{-}+\Psi \\
& \leq-\boldsymbol{b}_{-}+2 \Psi \\
& \leq \boldsymbol{b}_{+}+2 \Psi+\epsilon
\end{aligned}
$$

Thus, $b_{+}-\boldsymbol{b}_{+} \leq 2 \Psi+\epsilon=\Psi\left(\delta, L^{-1}, \epsilon \mid n, R\right)$
Recall that in the splitting theorem, we used the minimum principle to show $b_{+}+b_{-} \equiv$ 0 . In the almost splitting theorem, we showed $\epsilon \leq \mathbf{b}_{+}+\mathbf{b}_{-}$above. We have the following L^{2} gradient estimate.

Lemma 1.3. Assuming (1)-(3), then

$$
B_{R}(p)\left|\nabla b_{+}-\nabla \mathbf{b}_{+}\right|^{2} \leq \Psi
$$

Proof: Using integration by parts and $\mathbf{b}_{+}=b_{+}$on $\partial B_{R}(p)$, we have

$$
\begin{aligned}
B_{R}(p)\left|\nabla b_{+}-\nabla \mathbf{b}_{+}\right|^{2} & =-{ }_{B_{R}(p)} \Delta\left(b_{+}-\mathbf{b}_{+}\right)\left(b_{+}-\mathbf{b}_{+}\right) \\
& \leq{B_{R}(p)}\left|\Delta\left(b_{+}-\mathbf{b}_{+}\right)\left(b_{+}-\mathbf{b}_{+}\right)\right| \\
& \leq \Psi_{B_{R}(p)}\left|\Delta\left(b_{+}-\mathbf{b}_{+}\right)\right|, \quad(\text { Lemma } 1) \\
& =\Psi_{B_{R}(p)}\left|\Delta b_{+}\right| \\
& \leq \Psi
\end{aligned}
$$

In the splitting theorem, we proved the Busemann function was linear, i.e. Hess $b_{+} \equiv$ 0 . In the almost setting, we instead provide an average L^{2} estimate on $\mathrm{Hess}_{\mathbf{b}_{+}}$.

Lemma 1.4. Assuming (1)-(3), then

$$
B_{R / 2}(p)\left|\operatorname{Hess}_{\mathbf{b}_{+}}\right|^{2} \leq \Psi
$$

Proof: By Bochner's formula,

$$
\frac{1}{2} \Delta\left(\left|\nabla \mathbf{b}_{+}\right|^{2}\right)=\left|H e s s_{\mathbf{b}_{+}}\right|^{2}+\operatorname{Ric}\left(\nabla \mathbf{b}_{+}, \nabla \mathbf{b}_{+}\right)
$$

Using the cutoff function ϕ constructed in Theorem 8.16 of [1], with $\left.\phi\right|_{B_{R / 2}(p)} \equiv 1,|\Delta \phi| \leq$ $c(n)$, we have

$$
\begin{aligned}
B_{R / 2}(p) \mid \text { Hess }\left._{\mathbf{b}_{+}}\right|^{2} & \leq_{B_{R}(p)} \phi \mid \text { Hess }\left._{\mathbf{b}_{+}}\right|^{2} \\
& \leq_{B_{R}(p)} \frac{1}{2} \phi \Delta\left(\left|\nabla \mathbf{b}_{+}\right|^{2}-1\right)+(n-1) \delta\left|\nabla \mathbf{b}_{+}\right|^{2}, \quad \text { (Ric bound) } \\
& \leq_{B_{R}(p)} \frac{1}{2}|\Delta \phi|\left|\nabla \mathbf{b}_{+}\right|^{2}-\left.1|+(n-1) \delta| \nabla \mathbf{b}_{+}\right|^{2}, \quad \text { (integration by parts) } \\
& \leq\left. c(n)_{B_{R}(p)}| | \nabla \mathbf{b}_{+}\right|^{2}-\left.1|+(n-1) \delta| \nabla \mathbf{b}_{+}\right|^{2} \\
& \leq \Psi, \quad(\text { Lemma } 2)
\end{aligned}
$$

Next, we show a quantitative version of the Pythagorean theorem.
Lemma 1.5. Assume (1)-(3). Let $x, z, w \in B_{\frac{R}{8}}(p)$, with $x \in \mathbf{b}_{+}^{-1}(a)$, and z a point on $\mathbf{b}_{+}^{-1}(a)$ closest to w. Then

$$
\left|d(x, z)^{2}+d(z, w)^{2}-d(x, w)^{2}\right| \leq \Psi
$$

Proof: We apply the iterated segment inequality, volume comparison, and Lemma 3 to show there exist x^{*}, z^{*}, w^{*} such that,

$$
\begin{aligned}
d\left(x^{*}, x\right) & \leq \Psi \\
d\left(z^{*}, z\right) & \leq \Psi \\
d\left(w^{*}, w\right) & \leq \Psi
\end{aligned}
$$

and in addition, if $\sigma:[0, e] \rightarrow M$ is minimal from z^{*} to w^{*}, then,

$$
\begin{equation*}
\int_{U} \int_{0}^{l(s)}\left|\operatorname{Hess}_{\mathbf{b}_{+}}\left(\tau_{s}(t)\right)\right| d t d s \leq \Psi \tag{1.5}
\end{equation*}
$$

, where $U \subset[0, e]$ is of full measure, such that for all $s \in U$, the minimal geodesic $\tau_{s}:[0, l(s)] \rightarrow M$ from x^{*} to $\sigma(s)$ is unique. By the segment inequality,

$$
\left.\int_{B(x, \epsilon) \times B\left(p, \frac{R}{4}\right)} \mathcal{F}_{\mid \text {Hess } \mathbf{b}_{+} \mid}(x, r) d x d r \leq C R\left(|B(x, \epsilon)|+\left|B\left(p, \frac{R}{4}\right)\right|\right) \int_{B\left(p, \frac{R}{2}\right)} \right\rvert\, \text { Hess } \mathbf{b}_{+} \mid
$$

By Markov's inequality, there exists $x^{*} \in B(x, \epsilon)$ such that,

$$
\int_{B\left(p, \frac{R}{4}\right)} \mathcal{F}_{\mid H e s s} \mathbf{b}_{+}\left|\left(x^{*}, r\right) d r \leq \frac{C R\left(|B(x, \epsilon)|+\left|B\left(p, \frac{R}{4}\right)\right|\right)}{|B(x, \epsilon)|} \int_{B\left(p, \frac{R}{2}\right)}\right| \text { Hess } \mathbf{b}_{+} \mid
$$

Now, again by the segment inequality,
$\int_{B(z, \epsilon) \times B(w, \epsilon)} \mathcal{F}_{\mathcal{F}_{\mid \text {Hess } \mathbf{b}_{+} \mid}\left(x^{*}, \cdot\right)}(z, w) d z d w \leq C R(|B(z, \epsilon)|+|B(w, \epsilon)|) \int_{B\left(p, \frac{R}{4}\right)} \mathcal{F}_{\mid \text {Hess } \mathbf{b}_{+} \mid}\left(x^{*}, r\right) d r$
Combined with the above and Markov's inequality again, there exists $z^{*} \in B(z, \epsilon), w^{*} \in$ $B(w, \epsilon)$ such that,

$$
\left.\mathcal{F}_{\mathcal{F}_{\mid \text {Hess } \mathbf{b}_{+} \mid}\left(x^{*},\right)}\left(z^{*}, w^{*}\right) \leq \frac{C^{2} R^{2}(|B(y, \epsilon)|+|B(z, \epsilon)|)\left(|B(x, \epsilon)|+\left|B\left(p, \frac{R}{2}\right)\right|\right)}{|B(x, \epsilon)||B(z, \epsilon)||B(w, \epsilon)|} \int_{B\left(p, \frac{R}{2}\right)} \right\rvert\, \text { Hess } \mathbf{b}_{+} \mid
$$

By relative volume comparison and Lemma 3, we therefore have,

$$
\mathcal{F}_{\mathcal{F}_{\mid \text {Hess } \mathbf{b}_{+} \mid}\left(x^{*}, \cdot\right)}\left(z^{*}, w^{*}\right)=\int_{U} \int_{0}^{l(s)}\left|\operatorname{Hess}_{\mathbf{b}_{+}}\left(\tau_{s}(t)\right)\right| d t d s \leq \Psi
$$

Therefore, we have the desired x^{*}, z^{*}, w^{*}. Similarly, we apply the segment inequality to the function, $\mathcal{F}_{\left|\left|\nabla \mathbf{b}_{+}\right|-1\right|}$ to get,

$$
\begin{equation*}
\int_{0}^{e}| | \nabla \mathbf{b}_{+}(\sigma(s))|-1| d s \leq \Psi \tag{1.6}
\end{equation*}
$$

The Abresch-Gromoll inequality implies $|E(z)-E(x)| \leq \Psi$, which means $\mid b_{+}(z)-$ $b_{+}(x) \mid-d(z, x) \leq \Psi$. By Lemma 1,

$$
\begin{equation*}
\left|d(z, x)-\left(\mathbf{b}_{+}(z)-\mathbf{b}_{+}(x)\right)\right| \leq \Psi \tag{1.7}
\end{equation*}
$$

Equation (7), Lemma 1, and the Cheng-Yau gradient estimate $\left(\sup _{B_{R}(p)}\left|\nabla \mathbf{b}_{+}\right| \leq C\right)$ give

$$
\begin{equation*}
\int_{0}^{e}\left|\nabla \mathbf{b}_{+}(\sigma(s))-\sigma^{\prime}(s)\right| d s \leq \Psi \tag{1.8}
\end{equation*}
$$

Recall $\sigma^{\prime}(s)=\nabla b_{+}(\sigma(s))$, since b_{+}is a distance function. So (5) provides an integral estimate of the gradients along a geodesic. Furthermore, notice that for all $t \in[0, l(s)]$,
$\left|\left\langle\nabla \mathbf{b}_{+}\left(\tau_{s}(t)\right), \tau_{s}^{\prime}(t)\right\rangle-\left\langle\nabla \mathbf{b}_{+}\left(\tau_{s}(l(s))\right), \tau_{s}^{\prime}(l(s))\right\rangle\right|=\left|\int_{t}^{l(s)} \frac{d}{d u}\left\langle\nabla \mathbf{b}_{+}\left(\tau_{s}(u)\right), \tau_{s}^{\prime}(u)\right\rangle d u\right|$

$$
\begin{aligned}
& =\left|\int_{t}^{l(s)} \tau_{s}^{\prime} \cdot\left\langle\nabla \mathbf{b}_{+}\left(\tau_{s}(u)\right), \tau_{s}^{\prime}(u)\right\rangle d s\right|, \quad\left(\tau_{s}^{\prime}=\frac{d}{d u}\right) \\
& =\left|\int_{t}^{l(s)} \operatorname{Hess}_{\mathbf{b}_{+}}\left(\tau_{s}^{\prime}(u), \tau_{s}^{\prime}(u)\right) d u\right|, \quad\left(\text { since } \nabla_{\tau_{s}^{\prime}} \tau_{s}^{\prime}=0\right) \\
& \leq \int_{0}^{l(s)}\left|\operatorname{Hess}_{\mathbf{b}_{+}}\left(\tau_{s}(u)\right)\right| d u
\end{aligned}
$$

Integrating both sides by U, we get

$$
\begin{equation*}
\int_{U} \mid\left\langle\nabla \mathbf{b}_{+}\left(\tau_{s}(t), \tau_{s}^{\prime}(t)\right\rangle-\left\langle\nabla \mathbf{b}_{+}\left(\tau_{s}(l(s))\right), \tau_{s}^{\prime}(l(s))\right\rangle\right| \leq \int_{U} \int_{0}^{l(s)} \mid \text { Hess }_{\mathbf{b}_{+}}\left(\tau_{s}(u)\right) \mid d u d s \leq \Psi \tag{1.9}
\end{equation*}
$$

We now have the tools to prove the quantitative Pythagorean theorem,

$$
\begin{align*}
\frac{1}{2} d(z, w)^{2}=\frac{1}{2} d\left(z^{*}, w^{*}\right)^{2} \pm \Psi & =\int_{0}^{e} s d s \pm \Psi \\
& =\int_{0}^{e} \mathbf{b}_{+}(\sigma(s))-\mathbf{b}_{+}(\sigma(0)) d s \pm \Psi, \quad(\text { Lemma 1) } \\
& =\int_{U} \mathbf{b}_{+}\left(\tau_{s}(l(s))\right)-\mathbf{b}_{+}\left(\tau_{s}(0)\right) d s \pm \Psi \\
& (\tau(s)=\sigma(s),[0, e] \subset U \text { full measure }) \\
& =\int_{u} \int_{0}^{l(s)}\left\langle\nabla \mathbf{b}_{+}\left(\tau_{s}(t)\right), \tau_{s}^{\prime}(t)\right\rangle d t d s \pm \Psi \\
& \left(\left\langle\mathbf{b}_{+}\left(\tau_{s}(t)\right), \tau_{s}^{\prime}(t)\right\rangle=\frac{d}{d t} \mathbf{b}_{+}\left(\tau_{s}(t)\right)\right) \\
& =\int_{u} \int_{0}^{l(s)}\left\langle\nabla \mathbf{b}_{+}\left(\tau_{s}(l(s))\right), \tau_{s}^{\prime}(l(s))\right\rangle d t d s \pm \Psi, \quad(b y \quad(9)) \tag{9}\\
& =\int_{u}\left\langle\nabla \mathbf{b}_{+}\left(\tau_{s}(l(s))\right), \tau_{s}^{\prime}(l(s))\right\rangle l(s) d s \pm \Psi
\end{align*}
$$

The above quantity in the last line is,

$$
\begin{aligned}
\int_{u}\left\langle\nabla \mathbf{b}_{+}\left(\tau_{s}(l(s))\right), \tau_{s}^{\prime}(l(s))\right\rangle l(s) d s & \left.=\int_{u}\left\langle\nabla \mathbf{b}_{+}(\sigma(s))\right), \tau_{s}^{\prime}(l(s))\right\rangle l(s) d s, \quad\left(\tau_{s}(l(s))=\sigma(s)\right) \\
& =\int_{u}\left\langle\sigma^{\prime}(s), \tau_{s}^{\prime}(l(s))\right\rangle l(s) d s, \quad(b y(8)) \\
& =\int_{U} l^{\prime}(s) l(s) d s \pm \Psi \\
& \left(1 \text { st variation of arc length } \Rightarrow l^{\prime}(s)=\left\langle\sigma^{\prime}(s), \tau_{s}^{\prime}(l(s))\right\rangle\right) \\
& =\frac{1}{2} l^{2}(e)-\frac{1}{2} l^{2}(0) \pm \Psi \\
& =\frac{1}{2} d(x, w)^{2}-\frac{1}{2} d(x, z)^{2} \pm \Psi
\end{aligned}
$$

The quantitative Pythagorean theorem allows us to prove the quantitative version of the almost splitting theorem.

Theorem 1.6. Assuming (1)-(3), there is a length space X such that for some ball $B_{R / 4}((0, x)) \subset \mathbb{R} \times X$ with the product metric, we have,

$$
d_{G H}\left(B_{R / 4}(p), B_{R / 4}((0, x))\right) \leq \Psi
$$

Proof: By the quantitative Pythagorean theorem, $B_{\frac{R}{4}}(p)$ is Ψ-Gromov-Hausdorff close to a subset of $B_{\frac{R}{4}}((0, x)) \subset \mathbb{R} \times \mathbf{b}_{+}^{-1}(0)$. By the Abresch-Gromoll inequality, the subset can be taken to be the whole ball $B_{\frac{R}{4}}((0, x))$. However, the metric space $\mathbf{b}_{+}^{-1}(0)$ with the inherited metric from M is not a length space. To get a length space X, take $B_{\frac{R}{4}}\left(p_{i}\right) \in M_{i}^{n}$, where $\operatorname{Ric}_{M_{i}^{n}} \geq-(n-1) \delta_{i}$ and $\delta_{i} \rightarrow 0$; let $M_{i}^{n}=\left(M, \delta_{i}^{-1} g\right)$. By Gromov's compactness theorem, the sequence $B_{\frac{R}{4}}\left(p_{i}\right)$ subconverges. It must subconverge to a ball in a product space $\mathbb{R} \times X$ by the theorem. Since $B_{\frac{R}{4}}\left(p_{i}\right)$ is a length space, and the limit of length spaces is a length space, X must be a length space.

Theorem 2 is equivalent to the splitting theorem extending to Gromov-Hausdorff limit spaces.

Theorem 1.7. Let $M_{i}^{n} \xrightarrow{d_{G H}} Y$ satisfy Ric $_{M_{i}^{n}} \geq-(n-1) \delta_{i}$, where $\delta_{i} \rightarrow 0$. If Y contains a line, then Y splits as an isometric product $Y=\mathbb{R} \times X$, for some length space X.

Proof: If Y contains a line, the M_{i}^{n} must contain minimizing geodesics γ_{i} of length L_{i}, where $L_{i} \rightarrow \infty$. By Theorem 2, there exists a ball $B_{R_{i}}\left(p_{i}\right) \in M_{i}^{n}$ that is Ψ-GH close to $B_{R_{i}}\left(\left(0, x_{i}\right)\right) \subset \mathbb{R} \times X_{i}$, where X_{i} is some length space. Since the $R_{i} \rightarrow \infty$, in the limit Y splits isometrically as $\mathbb{R} \times X$, for some length space X.

References

[1] J. Cheeger, Degenerations of Riemannian metrics under Ricci curvature bounds
[2] J. Cheeger, T. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products
[3] P. Petersen, Riemannian Geometry
[4] T. Richard, An introduction to Ricci curvature with a view towards limit spaces

Benjamin Zhou, Department of Mathematics, Northwestern University, Evanston, IL, USA
Email address: byzhou01@math.northwestern.edu

