Every smooth cubic surface has exactly 27 lines (GSS talk)

Ben Zhou

May 27, 2021

1 Introduction

I'll present two proofs of the classical fact in enumerative geometry that every smooth cubic surface $\subseteq \mathbb{P}^{3}$ has exactly 27 lines. There is a "simpler" proof that uses mainly linear algebra to first show there are exactly 27 lines on the Fermat cubic $x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{4}^{3}=0$, and then proves every other smooth cubic must have the same number of lines. I'll present two other proofs: 1) Realizing the smooth cubic surface as the blow up of $\mathbb{C P}^{2}$ at 6 points, and counting lines in the blow up 2) Schubert calculus on the cohomology of $G r(2,4)$, the Grassmannian of 2 -planes in \mathbb{C}^{4}.

2 Counting lines on smooth cubic surface as $B l_{6 \mathrm{pts}} \mathbb{C P}^{2}$

Take 6 sufficiently general points in $\mathbb{C P}^{2}$, i.e. no three points are collinear, no six lie on a conic. There exists a rational map $\varphi: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{3}$ as follows: Take the vector space of cubic polynomials in $\mathbb{C P}^{2}$, which is $\binom{3+2}{2}=10$ dimensional. Asking that the cubic passes through 6 points imposes 6 linearly independent conditions. Hence, there exist 4 linearly independent cubics f_{i} vanishing at the 6 points. Define

$$
\varphi\left(\left[x_{0}: x_{1}: x_{2}\right]\right):=\left[f_{0}\left(x_{0}, x_{1}, x_{2}\right): f_{1}\left(x_{0}, x_{1}, x_{2}\right): f_{2}\left(x_{0}, x_{1}, x_{2}\right): f_{3}\left(x_{0}, x_{1}, x_{2}\right)\right]
$$

This map is clearly undefined at the six points. After blowing up at the 6 points, by the theorem of elimination of indeterminacy, there exists a morphism $\varphi^{\prime}: B l_{6 p t s} \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{3}$ and the commutative diagram.

, where π is the contraction map (Draw picture of blow up). The map φ^{\prime} is an embedding and is the same embedding from the Kodaira embedding theorem with the anti-canonical bundle $\mathcal{O}\left(3 L-E_{1}-\ldots-E_{6}\right)$ of $B l_{6 p t s} \mathbb{C P}^{2}$. Hence, the image $S:=\varphi^{\prime}\left(B l_{6 p t s} \mathbb{C P}^{2}\right)$ is a smooth surface. We need to verify it's cubic; it's enough to check $\int_{S} H^{2}=3$, since by Bezout's theorem, a cubic surface will intersect a line at 3 points ($H=P D$ (hyperplane), so H^{2} is the class of intersection of two hyperplanes or a line). The embedding map satisfies $c_{1}\left(\varphi^{\prime}\right)^{*}(\mathcal{O}(1))=\left(\varphi^{\prime}\right)^{*} H=3 H-P D\left(E_{1}\right)-\ldots-P D\left(E_{6}\right)=c_{1}\left(\mathcal{O}\left(3 L-E_{1}-\ldots-E_{6}\right)\right)$ So, since cup product is Poincare dual to intersection,
$\int_{S} H^{2}=\int_{B l_{6 p t s} \mathbb{C P}^{2}}\left(\left(\varphi^{\prime}\right)^{*} H\right)^{2}=\int_{B l_{6 p t s} \mathbb{C P}^{2}}\left(3 H-P D\left(E_{1}\right)-\ldots-P D\left(E_{6}\right)\right)^{2}=\left(3 L-E_{1}-\ldots-E_{6}\right) \cdot\left(3 L-E_{1}-\ldots-E_{6}\right)$
We have that L is the class of line that doesn't intersect $E_{i}, E_{i}^{2}=-1$, and $E_{i} \cdot E_{j}=0$ since the exceptional divisors are disjoint from each other. Thus, the above integral is 3 and the surface is cubic.

We can characterize lines on S as rational curves with self-intersection -1 .
Lemma 1 If ℓ is a line on S, then $\ell^{2}=-1$ on S. Conversely, if $C \subset S$ is a smooth irreducible rational curve with $C^{2}=-1$, then C is a line.

Proof: Let $\ell \subset S$ be a line. By the adjunction formula $\left(2 g-2=\ell \cdot\left(\ell+K_{S}\right)\right)$, we have $-2=\ell^{2}+\ell \cdot(-L)$, since the canonical divisor $K_{S}=-L$. Hence $\ell^{2}=-1$ on S. Conversely, by adjunction again, $-2=C^{2}+C \cdot K_{S}$, and thus $1=C \cdot L$. The degree of C is 1 , so C is a line.

Thus, lines on S are smooth rational curves with self intersection - So to count the lines on S, we count rational curves with self intersection -1 . Using the blow up description of the cubic surface, we see that the exceptional curves E_{1}, \ldots, E_{6} give us 6 lines. Furthermore, the proper transform $L-E_{i}-E_{j}$ of the unique line through p_{i} and p_{j} in $\mathbb{C P}^{2}$ give us $\binom{6}{2}=15$ lines, as $\left(L-E_{i}-E_{j}\right)^{2}=-1$. The proper transform $2 L-E_{i_{1}}-\ldots-E_{i_{5}}$ of the unique conic through 5 points gives us $\binom{6}{5}=6$ lines (Draw pictures here). This already gives us a total of 27 lines! To see that these are the only lines, any other line in $B l_{6 p t s} \mathbb{C P}^{2}$ is of the form $D=a L-b_{1} E_{1}-\ldots-b_{6} E_{6}$ with $a>0, b_{i} \geq 0$ and $D^{2}=-1$. It follows from Cauchy-Schwarz implying $a=1$ or 2 , and $a^{2}-\sum b_{i}^{2}=-1$ that the above are the only lines.

We have shown that when the cubic surface is a blow up of the projective plane at 6 sufficiently general points, then it has exactly 27 lines. But actually it's a theorem that every smooth cubic surface is obtained in this way. Thus every smooth cubic surface has exactly 27 lines (Heuristic: we know $\left\{B l_{6 p t s} \mathbb{C P}^{2}\right\} \subseteq$ \{smooth cubic surfaces\}. Both sides are 19 dimensional, LHS forms a open dense subset).

3 Schubert calculus on $\operatorname{Gr}(2,4)$

Every 2-plane in \mathbb{C}^{4} may be represented as a rank $2,2 \times 4$ matrix with complex coefficients. We are interested in $G r(2,4)$, because 2-planes in \mathbb{C}^{4} correspond to lines in \mathbb{P}^{3}, after projectivization of the row space. After Gaussian elimination, there are 6 possible row echelon forms of an element in $\operatorname{Gr}(2,4)$,

$$
\begin{aligned}
& \Sigma_{0,0}=\left[\begin{array}{llll}
1 & 0 & * & * \\
0 & 1 & * & *
\end{array}\right], \Sigma_{1,0}=\left[\begin{array}{llll}
1 & * & 0 & * \\
0 & 0 & 1 & *
\end{array}\right], \Sigma_{2,0}=\left[\begin{array}{llll}
1 & * & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \Sigma_{1,1}=\left[\begin{array}{llll}
0 & 1 & 0 & * \\
0 & 0 & 1 & *
\end{array}\right], \Sigma_{2,1}=\left[\begin{array}{llll}
0 & 1 & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \Sigma_{2,2}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

, where $*$ signifies an arbitrary complex number. We see that $\Sigma_{0,0}$ is a complex 4-cell, etc. and they provide a cellular decomposition of $\operatorname{Gr}(2,4)$. These are called the Schubert cells. We first find a geometric interpretation of the cellular decomposition. Fix a flag $p \in L \subset H$, where we take the point $p=[0: 0: 0: 1]$, the line $L=\left\{x_{0}=x_{1}=0\right\}$, and the hyperplane $\left\{x_{0}=0\right\}$. Using the matrix descriptions of the $\Sigma_{i, j}$, it is easy to see that

$$
\Sigma_{2,2}=\{L\}, \Sigma_{2,1}=\{\ell \mid p \in \ell \subset H\}, \Sigma_{1,1}=\{\ell \mid \ell \subset H\}, \Sigma_{2,0}=\{\ell \mid p \in \ell\}, \Sigma_{1,0}=\{\ell \mid \ell \cap L \neq \varnothing\}, \Sigma_{0,0}=G r(2,4)
$$

and we have the cellular decomposition,

$$
\Sigma_{2,2} \subset \Sigma_{2,1} \subset \Sigma_{1,1} \cup \Sigma_{2,0} \subset \Sigma_{1,0} \subset \Sigma_{0,0}
$$

Since these are complex cells, the cohomology is even dimensional and free abelian, i.e.

$$
\begin{gathered}
H^{0}(G r(2,4) ; \mathbb{Z})=\mathbb{Z} \sigma_{0,0}, H^{2}(G r(2,4) ; \mathbb{Z})=\mathbb{Z} \sigma_{1,0} \\
H^{4}(G r(2,4) ; \mathbb{Z})=\mathbb{Z} \sigma_{2,0} \oplus \mathbb{Z} \sigma_{1,1}, H^{6}(G r(2,4) ; \mathbb{Z})=\mathbb{Z} \sigma_{2,1}, H^{8}(G r(2,4) ; \mathbb{Z})=\mathbb{Z} \sigma_{2,2}
\end{gathered}
$$

, where $\sigma_{i, j}$ are the generators of cohomology corresponding to the $\Sigma_{i, j}$.

The calculation of 27 lines on the cubic surface will be a characteristic class calculation involving the Schubert classes. So, we calculate part of the cohomology ring of $\operatorname{Gr}(2,4)$, namely the classes $\sigma_{11} \sigma_{20}, \sigma_{10}^{2}$, and σ_{11}^{2}. First, fix another flag $p^{\prime} \in L^{\prime} \subset H^{\prime}$, in order the make intersections transverse. We see that $\sigma_{11} \sigma_{20}$ represent the lines ℓ which are contained in H and meet p^{\prime}. Generically $p^{\prime} \notin H$, so there are no such lines, i.e. $\sigma_{11} \sigma_{20}=0$. We see that σ_{11}^{2} represent the lines ℓ contained in the hyperplanes H and H^{\prime}. The intersection $H \cap H^{\prime}$ will be only one line, so $\sigma_{11}^{2}=\sigma_{22}$. To calculate σ_{10}^{2}, we know that $\sigma_{10}^{2}=a \sigma_{20}+b \sigma_{11}$ for some integers a, b. From this, we have $\sigma_{10}^{2} \sigma_{20}=a \sigma_{22}$ and $\sigma_{10}^{2} \sigma_{11}=b \sigma_{11}$. Taking a third flag $p^{\prime \prime} \in L^{\prime \prime} \subset H^{\prime \prime}$, the class $\sigma_{10}^{2} \sigma_{20}$ represents the lines ℓ that meet L, L^{\prime} and contain $p^{\prime \prime}$. Lines meeting L^{\prime} and containing $p^{\prime \prime}$ span a plane. The line L will intersect the plane at only one point, so there is only one line satisfying all three conditions. Therefore, $\sigma_{10}^{2} \sigma_{20}=\sigma_{22}$. Similarly, $\sigma_{10}^{2} \sigma_{11}$ will represent lines ℓ intersecting L, L^{\prime} and contained in the hyperplane $H^{\prime \prime}$. Each line L, L^{\prime} will intersect $H^{\prime \prime}$ at one point respectively, and there exists a unique line connecting the two points. Thus $a=b=1$, i.e . $\sigma_{10}^{2}=\sigma_{20}+\sigma_{11}$.

Recall that we have the tautological bundle E over $\operatorname{Gr}(2,4)$. We will calculate the classes of $S y m^{3} E^{*}$, the fiber of which are degree 3 homogeneous forms on the line ℓ. Now take a smooth cubic surface $S=\{F=$ $0\} \subseteq \mathbb{P}^{3}$, which is the zero-set of a degree 3 homogeneous polynomial F. Given $\ell \subseteq \mathbb{C P}^{3}$, we can restrict $\left.F\right|_{\ell}$, and thus get a section s of $S y m^{3} E^{*}$. The top Chern class of $S y m^{3} E^{*}$ represents the 0 -set of a generic section. The zeros of the section are the lines contained in the cubic surface S ! Thus we calculate

$$
\int_{G r(2,4} c_{4}\left(S y m^{3} E^{*}\right)
$$

with $r k_{\mathbb{C}} S^{S y m^{3}} E^{*}=\binom{2+3-1}{1}=4$. The splitting principle can be used to calculate $c_{4}\left(S^{3} E^{*}\right)$: any formula of Chern classes of a vector bundle derived from assuming E is a direct sum of line bundles actually holds. Using this, we have

$$
c_{4}\left(\text { Sym }^{3} E^{*}\right)=9 c_{2}\left(E^{*}\right)\left(2 c_{1}\left(E^{*}\right)^{2}+c_{2}\left(E^{*}\right)\right), \text { with } c_{1}\left(E^{*}\right)=\sigma_{10}, c_{2}\left(E^{*}\right)=\sigma_{11}
$$

Thus, $c_{4}=9 \sigma_{11}\left(2 \sigma_{10}^{2}+\sigma_{11}\right)=27 \sigma_{22} \Rightarrow \int_{G r(2,4)} c_{4}=27$. This number is up to multiplicity, but if we assume the section s has transverse zeros, then there exactly 27 lines. The section is transverse precisely when X is a smooth cubic surface.

References

[1] Vakil's course on complex algebraic surfaces
[2] Jack Huizenga's quora post
[3] Hartshorne chapter 5
[4] Griffiths Harris chapter on surfaces

