Point-like Bounding Chains in Open Gromov-Witten Theory

Ben Zhou

July 3, 2023

Background on (closed, genus 0) Gromov Witten theory

- Let (M, ω) be a $2 n$-dimensional symplectic manifold, J an ω-tame almost complex structure.

Background on (closed, genus 0) Gromov Witten theory

- Let (M, ω) be a $2 n$-dimensional symplectic manifold, J an ω-tame almost complex structure.
- Closed Gromov-Witten theory seeks to count J-holomophic spheres $u: S^{2} \rightarrow M$ in a curve class $A \in H_{2}(M ; \mathbb{Z})$ intersecting prescribed cycles $X_{i} \subset M$.

Background on (closed, genus 0) Gromov Witten theory

- Let (M, ω) be a $2 n$-dimensional symplectic manifold, J an ω-tame almost complex structure.
- Closed Gromov-Witten theory seeks to count J-holomophic spheres $u: S^{2} \rightarrow M$ in a curve class $A \in H_{2}(M ; \mathbb{Z})$ intersecting prescribed cycles $X_{i} \subset M$.
- Define $G W_{A, k}\left(\alpha_{1}, \ldots, \alpha_{k}\right):=\int_{\overline{\mathcal{M}_{0, k}}(A, J)} e v_{1}^{*} \alpha_{1} \wedge \ldots \wedge e v_{k}^{*} \alpha_{k}$, where $\overline{\mathcal{M}_{0, k}}(A, J)$ is the Gromov compactification of the moduli space of J-holomorphic spheres with k marked points, α_{i} are Poincaré dual to X_{i}, and $\left(e v_{1}, \ldots, e v_{k}\right)$ are evaluation maps of u at the k-marked points.

Background on (closed, genus 0) Gromov Witten theory

- Let (M, ω) be a $2 n$-dimensional symplectic manifold, J an ω-tame almost complex structure.
- Closed Gromov-Witten theory seeks to count J-holomophic spheres $u: S^{2} \rightarrow M$ in a curve class $A \in H_{2}(M ; \mathbb{Z})$ intersecting prescribed cycles $X_{i} \subset M$.
- Define $G W_{A, k}\left(\alpha_{1}, \ldots, \alpha_{k}\right):=\int_{\overline{\mathcal{M}_{0, k}}(A, J)} e v_{1}^{*} \alpha_{1} \wedge \ldots \wedge e v_{k}^{*} \alpha_{k}$, where $\overline{\mathcal{M}_{0, k}}(A, J)$ is the Gromov compactification of the moduli space of J-holomorphic spheres with k marked points, α_{i} are Poincaré dual to X_{i}, and $\left(e v_{1}, \ldots, e v_{k}\right)$ are evaluation maps of u at the k-marked points.
- The integral needs to be made sense of, since $\overline{\mathcal{M}_{0, k}}(A, J)$ does not carry a fundamental class. (Methods such as pseudocycles, virtual fundamental classes, Kuranishi structures, polyfold theory, etc. have been used)

Background on (closed, genus 0) Gromov Witten theory

- Let (M, ω) be a $2 n$-dimensional symplectic manifold, J an ω-tame almost complex structure.
- Closed Gromov-Witten theory seeks to count J-holomophic spheres $u: S^{2} \rightarrow M$ in a curve class $A \in H_{2}(M ; \mathbb{Z})$ intersecting prescribed cycles $X_{i} \subset M$.
- Define $G W_{A, k}\left(\alpha_{1}, \ldots, \alpha_{k}\right):=\int_{\overline{\mathcal{M}_{0, k}}(A, J)} e v_{1}^{*} \alpha_{1} \wedge \ldots \wedge e v_{k}^{*} \alpha_{k}$, where $\overline{\mathcal{M}_{0, k}}(A, J)$ is the Gromov compactification of the moduli space of J-holomorphic spheres with k marked points, α_{i} are Poincaré dual to X_{i}, and $\left(e v_{1}, \ldots, e v_{k}\right)$ are evaluation maps of u at the k-marked points.
- The integral needs to be made sense of, since $\overline{\mathcal{M}_{0, k}}(A, J)$ does not carry a fundamental class. (Methods such as pseudocycles, virtual fundamental classes, Kuranishi structures, polyfold theory, etc. have been used)
- If the boundary strata from the Gromov compactification have codimension $\geq \mathbf{2}$, then Gromov-Witten invariants can be defined. They depend neither on the almost complex structure J as long as it tames ω, nor on the representatives of the cohomology classes α_{i}.

Open Gromov-Witten Theory (OGW)

- Let L be a Lagrangian submanifold of M.

Open Gromov-Witten Theory (OGW)

- Let L be a Lagrangian submanifold of M.
- Open Gromov-Witten theory seeks to count J-holomorphic discs $u:\left(D^{2}, S^{1}\right) \rightarrow(M, L)$ with boundary on L and in a curve class $\beta \in H_{2}(M, L)$, that have prescribed intersection data in M.

Open Gromov-Witten Theory (OGW)

- Let L be a Lagrangian submanifold of M.
- Open Gromov-Witten theory seeks to count J-holomorphic discs $u:\left(D^{2}, S^{1}\right) \rightarrow(M, L)$ with boundary on L and in a curve class $\beta \in H_{2}(M, L)$, that have prescribed intersection data in M.
- Unlike in the closed case, there exist boundary strata of codimension 1 in the moduli space of J-holomorphic discs.

Open Gromov-Witten Theory (OGW)

- Let L be a Lagrangian submanifold of M.
- Open Gromov-Witten theory seeks to count J-holomorphic discs $u:\left(D^{2}, S^{1}\right) \rightarrow(M, L)$ with boundary on L and in a curve class $\beta \in H_{2}(M, L)$, that have prescribed intersection data in M.
- Unlike in the closed case, there exist boundary strata of codimension $\mathbf{1}$ in the moduli space of J-holomorphic discs.
- Intuitively, because of Stokes' theorem, you would not expect the integral above to be independent of the representatives of cohomology classes being integrated anymore.

Some previous work in defining Open Gromov Witten invariants

- Liu defined OGWs for (M, L) carrying an S^{1} action (2002)
- Using anti-symplectic involution, Welschinger defined counts of real rational J-holomorphic curves in dimensions 2,3 (2005)
- Fukaya defined OGWs for Calabi-Yau 3-fold and Maslov 0 Lagrangian (2011)
- Georgieva extended Welschinger's work to higher, odd dimensions (2016)

Bounding cochains in Open Gromov Witten invariants

- Fukaya introduced bounding cochains to show Lagrangian Floer theory can be defined in more general settings.
- The bounding cochain deforms the Floer coboundary operator to one that squares to 0 , and "cancels" codimension 1 bubbling.
- This presentation seeks to explain Solomon-Tukachinsky's approach of defining OGWs using bounding cochains.

Setting

- Let (M, ω, J) be a $2 n$-dimensional symplectic manifold with a ω-tame almost complex structure J, and a relatively spin Lagrangian L.

Setting

- Let (M, ω, J) be a $2 n$-dimensional symplectic manifold with a ω-tame almost complex structure J, and a relatively spin Lagrangian L.
- Let $\Pi=H_{2}(X, L) / S_{L}$ where S_{L} is a subgroup of $\operatorname{ker}(\omega \oplus \mu): H_{2}(X, L) \rightarrow \mathbb{R} \oplus \mathbb{Z}$. Denote $\beta_{0} \in \Pi$ to be the zero element.

Setting

- Let (M, ω, J) be a $2 n$-dimensional symplectic manifold with a ω-tame almost complex structure J, and a relatively spin Lagrangian L.
- Let $\Pi=H_{2}(X, L) / S_{L}$ where S_{L} is a subgroup of $\operatorname{ker}(\omega \oplus \mu): H_{2}(X, L) \rightarrow \mathbb{R} \oplus \mathbb{Z}$. Denote $\beta_{0} \in \Pi$ to be the zero element.
- Define the Novikov field $\Lambda=\left\{\sum_{i=0}^{\infty} a_{i} T^{\beta_{i}} \mid a_{i} \in \mathbb{R}, \beta_{i} \in \Pi, \omega\left(\beta_{i}\right) \geq 0, \lim _{i \rightarrow \infty} \omega\left(\beta_{i}\right)=\infty\right\}$ and $\Lambda^{+}=\left\{\sum_{i=0}^{\infty} a_{i} T^{\beta_{i}} \in \Lambda \mid \omega\left(\beta_{i}\right)>0\right\}$.

Setting

- Let (M, ω, J) be a $2 n$-dimensional symplectic manifold with a ω-tame almost complex structure J, and a relatively spin Lagrangian L.
- Let $\Pi=H_{2}(X, L) / S_{L}$ where S_{L} is a subgroup of $\operatorname{ker}(\omega \oplus \mu): H_{2}(X, L) \rightarrow \mathbb{R} \oplus \mathbb{Z}$. Denote $\beta_{0} \in \Pi$ to be the zero element.
- Define the Novikov field $\Lambda=\left\{\sum_{i=0}^{\infty} a_{i} T^{\beta_{i}} \mid a_{i} \in \mathbb{R}, \beta_{i} \in \Pi, \omega\left(\beta_{i}\right) \geq 0, \lim _{i \rightarrow \infty} \omega\left(\beta_{i}\right)=\infty\right\}$ and $\Lambda^{+}=\left\{\sum_{i=0}^{\infty} a_{i} T^{\beta_{i}} \in \Lambda \mid \omega\left(\beta_{i}\right)>0\right\}$.
- Denote cochains on L by $A^{*}(L)$, and cochains on X relative to L by $A^{*}(X, L)$.

Setting

- Let (M, ω, J) be a $2 n$-dimensional symplectic manifold with a ω-tame almost complex structure J, and a relatively spin Lagrangian L.
- Let $\Pi=H_{2}(X, L) / S_{L}$ where S_{L} is a subgroup of $\operatorname{ker}(\omega \oplus \mu): H_{2}(X, L) \rightarrow \mathbb{R} \oplus \mathbb{Z}$. Denote $\beta_{0} \in \Pi$ to be the zero element.
- Define the Novikov field $\Lambda=\left\{\sum_{i=0}^{\infty} a_{i} T^{\beta_{i}} \mid a_{i} \in \mathbb{R}, \beta_{i} \in \Pi, \omega\left(\beta_{i}\right) \geq 0, \lim _{i \rightarrow \infty} \omega\left(\beta_{i}\right)=\infty\right\}$ and $\Lambda^{+}=\left\{\sum_{i=0}^{\infty} a_{i} T^{\beta_{i}} \in \Lambda \mid \omega\left(\beta_{i}\right)>0\right\}$.
- Denote cochains on L by $A^{*}(L)$, and cochains on X relative to L by $A^{*}(X, L)$.
- Introduce formal variables s, t_{0}, \ldots, t_{N}.

Moduli spaces involved

- Gromov Compactness states that for a sequence of J-holomorphic discs with uniformly bounded energy, there exists a subsequence that converges up to $P S L_{2}(\mathbb{R})$ action to an at worst nodal J-holomorphic disc with components that are discs or spheres.

Moduli spaces involved

- Gromov Compactness states that for a sequence of J-holomorphic discs with uniformly bounded energy, there exists a subsequence that converges up to $P S L_{2}(\mathbb{R})$ action to an at worst nodal J-holomorphic disc with components that are discs or spheres.
- When there are marked points, the subsequence converges to a stable nodal J-holomorphic disc, i.e.
$2(\#$ of interior marked and nodal points $)+(\#$ of boundary marked and nodal points $) \geq 3$

Moduli spaces involved

- Gromov Compactness states that for a sequence of J-holomorphic discs with uniformly bounded energy, there exists a subsequence that converges up to $P S L_{2}(\mathbb{R})$ action to an at worst nodal J-holomorphic disc with components that are discs or spheres.
- When there are marked points, the subsequence converges to a stable nodal J-holomorphic disc, i.e.
$2(\#$ of interior marked and nodal points $)+(\#$ of boundary marked and nodal points $) \geq 3$
- Denote $\mathcal{M}_{k+1, I}(\beta)$ to be the moduli space of $g=0$, J-holomorphic stable maps $u:(\Sigma, \partial \Sigma) \rightarrow(M, L)$ with 1 boundary component, $k+1$ boundary marked points, and $/$ interior marked points. Let $e v b_{j}: \mathcal{M}_{k+1, I}(\beta) \rightarrow L$ be the evaluation map at the b_{j} boundary marked point, and $e v i_{j}: \mathcal{M}_{k+1, l}(\beta) \rightarrow M$ be the evaluation map at the i_{j} interior marked point.

Moduli spaces involved

- $\mathcal{M}_{k+1, l}(\beta)$ has virtual dimension $n-3+\mu(\beta)+k+2$ I. It has codimension 1 boundary.

Moduli spaces involved

- $\mathcal{M}_{k+1, I}(\beta)$ has virtual dimension $n-3+\mu(\beta)+k+2$ I. It has codimension 1 boundary.
- The codimension 1 boundary we want to consider are

Moduli spaces involved

- $\mathcal{M}_{k+1, I}(\beta)$ has virtual dimension $n-3+\mu(\beta)+k+2$ l. It has codimension 1 boundary.
- The codimension 1 boundary we want to consider are
- Assume $\mathcal{M}_{k+1, l}(\beta)$ is a smooth orbifold with corners, and the evaluation maps are proper submersions. The latter assumption will allow us to define pushforward operations with the evaluation map. This holds for $\left(\mathbb{C P}^{n}, \mathbb{R P}^{n}\right)$.

Moduli spaces involved

- $\mathcal{M}_{k+1, I}(\beta)$ has virtual dimension $n-3+\mu(\beta)+k+2$ l. It has codimension 1 boundary.
- The codimension 1 boundary we want to consider are
- Assume $\mathcal{M}_{k+1, I}(\beta)$ is a smooth orbifold with corners, and the evaluation maps are proper submersions. The latter assumption will allow us to define pushforward operations with the evaluation map. This holds for $\left(\mathbb{C P}^{n}, \mathbb{R P}^{n}\right)$.
- The relative spin condition on L makes $\mathcal{M}_{k+1, /}(\beta)$ orientable.

A^{∞} algebra associated to cochains of L

- Let $R:=\Lambda\left[\left[s, t_{0}, \ldots, t_{N}\right]\right]$ and $Q:=\mathbb{R}\left[t_{0}, \ldots, t_{N}\right]$. Take the ideals $\mathcal{I}_{R}:=\left\langle s, t_{0}, \ldots, t_{N}\right\rangle \triangleleft R$ and $\mathcal{I}_{Q}:=\left\langle t_{0}, \ldots, t_{N}\right\rangle \triangleleft Q$.

A^{∞} algebra associated to cochains of L

- Let $R:=\Lambda\left[\left[s, t_{0}, \ldots, t_{N}\right]\right]$ and $Q:=\mathbb{R}\left[t_{0}, \ldots, t_{N}\right]$. Take the ideals $\mathcal{I}_{R}:=\left\langle s, t_{0}, \ldots, t_{N}\right\rangle \triangleleft R$ and $\mathcal{I}_{Q}:=\left\langle t_{0}, \ldots, t_{N}\right\rangle \triangleleft Q$.
- Let $C:=A^{*}(L) \otimes R$ and $D:=A^{*}(X, L) \otimes Q$. Choose $\gamma \in \mathcal{I}_{Q} A^{*}(X, L ; Q)$ with $d \gamma=0, \operatorname{deg} \gamma=2$. Define the A^{∞} structure maps $\mathfrak{m}_{k}^{\gamma}: C^{\otimes k} \rightarrow C$ for $k \geq 0$ by

$$
\mathfrak{m}_{k}^{\gamma}\left(\alpha_{1}, \ldots, \alpha_{k}\right):=\delta_{k, 1} d \alpha_{1}+\sum_{\beta \in \Pi, l \geq 0} \frac{T^{\beta}}{I!}\left(e v b_{0}\right)_{*}\left(\bigwedge_{j=1}^{l}\left(e v i_{j}^{\beta}\right)^{*} \gamma \wedge \bigwedge_{j=1}^{k}\left(e v b_{j}^{\beta}\right)^{*} \alpha_{j}\right)
$$

A^{∞} algebra associated to cochains of L

- Let $R:=\Lambda\left[\left[s, t_{0}, \ldots, t_{N}\right]\right]$ and $Q:=\mathbb{R}\left[t_{0}, \ldots, t_{N}\right]$. Take the ideals $\mathcal{I}_{R}:=\left\langle s, t_{0}, \ldots, t_{N}\right\rangle \triangleleft R$ and $\mathcal{I}_{Q}:=\left\langle t_{0}, \ldots, t_{N}\right\rangle \triangleleft Q$.
- Let $C:=A^{*}(L) \otimes R$ and $D:=A^{*}(X, L) \otimes Q$. Choose $\gamma \in \mathcal{I}_{Q} A^{*}(X, L ; Q)$ with $d \gamma=0, \operatorname{deg} \gamma=2$. Define the A^{∞} structure maps $\mathfrak{m}_{k}^{\gamma}: C^{\otimes k} \rightarrow C$ for $k \geq 0$ by

$$
\mathfrak{m}_{k}^{\gamma}\left(\alpha_{1}, \ldots, \alpha_{k}\right):=\delta_{k, 1} d \alpha_{1}+\sum_{\beta \in \Pi, l \geq 0} \frac{T^{\beta}}{I!}\left(e v b_{0}\right)_{*}\left(\bigwedge_{j=1}^{l}\left(e v i_{j}^{\beta}\right)^{*} \gamma \wedge \bigwedge_{j=1}^{k}\left(e v b_{j}^{\beta}\right)^{*} \alpha_{j}\right)
$$

- $\left(e v b_{0}\right)_{*}$ is defined by integration over the fiber, as it's a proper submersion. The output is a chain given by all points that lie on a boundary of a disc with boundary constraints $\alpha_{1}, \ldots, \alpha_{k}$ and / interior constraints γ, for all $/$.

A^{∞} algebra associated to cochains of L, cont'd

- The $\left\{\mathfrak{m}_{k}\right\}_{k=0}^{\infty}$ satisfy the A^{∞} relations, i.e.

$$
\sum_{k_{1}+k_{2}=k+1,1 \leq i \leq k_{1}}(-1)^{\epsilon(\alpha)} \mathfrak{m}_{k_{1}}^{\gamma}\left(\alpha_{1}, \ldots, \alpha_{i-1}, \mathfrak{m}_{k_{2}}^{\gamma}\left(\alpha_{i}, \ldots, \alpha_{i+k_{2}-1}\right), \alpha_{i+k_{2}}, \ldots, \alpha_{k}\right)=0
$$

- Furthermore, define $\mathfrak{m}_{-1}^{\gamma}:=\sum_{\beta \in \Pi, I \geq 0} \frac{T^{\beta}}{!!} \int_{\mathcal{M}_{0, l}(\beta)} \bigwedge_{i=1}^{l}\left(e v i{ }_{j}^{\beta}\right)^{*} \gamma$

Bounding pairs and the superpotential

- Define (γ, b) to be a bounding pair with $\gamma \in \mathcal{I}_{Q} A^{*}(X, L ; Q), d \gamma=0$, $\operatorname{deg} \gamma=2$, and $b \in I_{R} C, \operatorname{deg}_{C} b=1$ if the Maurer-Cartan equation holds

$$
\sum_{k \geq 0} \mathfrak{m}_{k}^{\gamma}\left(b^{\otimes k}\right)=c \cdot 1
$$

where 1 is the constant function on L and $c \in \mathcal{I}_{R}$ with $\operatorname{deg} c=2$. Here b is called a (weakly) bounding cochain.

Bounding pairs and the superpotential

- Define (γ, b) to be a bounding pair with $\gamma \in \mathcal{I}_{Q} A^{*}(X, L ; Q), d \gamma=0$, $\operatorname{deg} \gamma=2$, and $b \in I_{R} C, \operatorname{deg}_{C} b=1$ if the Maurer-Cartan equation holds

$$
\sum_{k \geq 0} \mathfrak{m}_{k}^{\gamma}\left(b^{\otimes k}\right)=c \cdot 1
$$

where 1 is the constant function on L and $c \in \mathcal{I}_{R}$ with $\operatorname{deg} c=2$. Here b is called a (weakly) bounding cochain.

- Define the superpotential

$$
\Omega(\gamma, b)=\Omega_{J}(\gamma, b):=(-1)^{n}\left(\sum_{k \geq 0} \frac{1}{k+1}\left\langle\mathfrak{m}_{k}^{\gamma}\left(b^{\otimes k}\right), b\right\rangle+\mathfrak{m}_{-1}^{\gamma}\right)
$$

Here $\langle\xi, \eta\rangle:=(-1)^{|\eta|} \int_{L} \xi \wedge \eta$ is the Poincaré pairing.

Bounding pairs and the superpotential

- Define (γ, b) to be a bounding pair with $\gamma \in \mathcal{I}_{Q} A^{*}(X, L ; Q), d \gamma=0, \operatorname{deg} \gamma=2$, and $b \in I_{R} C, \operatorname{deg}_{C} b=1$ if the Maurer-Cartan equation holds

$$
\sum_{k \geq 0} \mathfrak{m}_{k}^{\gamma}\left(b^{\otimes k}\right)=c \cdot 1
$$

where 1 is the constant function on L and $c \in \mathcal{I}_{R}$ with $\operatorname{deg} c=2$. Here b is called a (weakly) bounding cochain.

- Define the superpotential

$$
\Omega(\gamma, b)=\Omega_{J}(\gamma, b):=(-1)^{n}\left(\sum_{k \geq 0} \frac{1}{k+1}\left\langle\mathfrak{m}_{k}^{\gamma}\left(b^{\otimes k}\right), b\right\rangle+\mathfrak{m}_{-1}^{\gamma}\right)
$$

Here $\langle\xi, \eta\rangle:=(-1)^{|\eta|} \int_{L} \xi \wedge \eta$ is the Poincaré pairing.

- The superpotential is a function on the space of bounding pairs. Note b is not necessarily closed.

Invariance of the superpotential

- Let (γ, b) be a bounding pair with respect to J, and $\left(\gamma^{\prime}, b^{\prime}\right)$ a bounding pair with respect to J^{\prime}. There exists an equivalence relation called gauge equivalence on bounding pairs that essentially constructs an isotopy between them.
- S-T showed the following,

Theorem (Invariance of the superpotential, S-T)

If $(\gamma, b) \sim\left(\gamma^{\prime}, b^{\prime}\right)$, then $\Omega_{J}(\gamma, b)=\Omega_{J^{\prime}}\left(\gamma^{\prime}, b^{\prime}\right)$

- In proving this invariance, need to consider curve classes $\beta \in \operatorname{Im}\left\{\left(H_{2}(X, L) \rightarrow H_{1}(L)\right)\right\}$ as a special case. "Cancel out" this possible degeneration by also considering moduli space of spheres with 1 marked point intersecting L.

Classification of Bounding Pairs

- Define a map $\rho:\{$ bounding pairs $\} / \sim\left(\mathcal{I}_{Q} H^{*}(X, L ; Q)\right)_{2} \oplus\left(\mathcal{I}_{R}\right)_{1-n}$,

$$
\rho([\gamma, b]):=\left([\gamma], \int_{L} b\right)
$$

- In certain settings, ρ is bijective,

Theorem (Classification of bounding pairs, S-T)

Assume $H^{*}(L ; \mathbb{R}) \cong H^{*}\left(S^{n} ; \mathbb{R}\right)$. Then ρ is bijective.

- Reason for the term "point-like": bounding cochain b is therefore determined up to gauge equivalence by its form part of degree n, which will be a multiple of the Poincaré dual of a point.

Definition of OGWs using bounding cochains

- Assuming the theorems above, we can define Open Gromov-Witten invariants of the pair (M, L). Take a basis $\Gamma_{0}, \ldots, \Gamma_{N}$ of $H^{*}(M, L ; \mathbb{R})$. Set $\Gamma:=\sum_{j=0}^{N} t_{j} \Gamma_{j}$ and $\operatorname{deg} t_{j}=2-\left|\Gamma_{j}\right|$.

Definition of OGWs using bounding cochains

- Assuming the theorems above, we can define Open Gromov-Witten invariants of the pair (M, L). Take a basis $\Gamma_{0}, \ldots, \Gamma_{N}$ of $H^{*}(M, L ; \mathbb{R})$. Set $\Gamma:=\sum_{j=0}^{N} t_{j} \Gamma_{j}$ and $\operatorname{deg} t_{j}=2-\left|\Gamma_{j}\right|$.
- Since ρ is a bijection, choose a bounding pair (γ, b) such that

$$
\rho([\gamma, b]):=\left([\gamma], \int_{L} b\right)=(\Gamma, s)
$$

Definition of OGWs using bounding cochains

- Assuming the theorems above, we can define Open Gromov-Witten invariants of the pair (M, L). Take a basis $\Gamma_{0}, \ldots, \Gamma_{N}$ of $H^{*}(M, L ; \mathbb{R})$. Set $\Gamma:=\sum_{j=0}^{N} t_{j} \Gamma_{j}$ and $\operatorname{deg} t_{j}=2-\left|\Gamma_{j}\right|$.
- Since ρ is a bijection, choose a bounding pair (γ, b) such that

$$
\rho([\gamma, b]):=\left([\gamma], \int_{L} b\right)=(\Gamma, s)
$$

- $\Omega(\gamma, b)$ is independent of representatives of $[(\gamma, b)]$, because of gauge equivalence.

Definition of OGWs using bounding cochains

- Assuming the theorems above, we can define Open Gromov-Witten invariants of the pair (M, L). Take a basis $\Gamma_{0}, \ldots, \Gamma_{N}$ of $H^{*}(M, L ; \mathbb{R})$. Set $\Gamma:=\sum_{j=0}^{N} t_{j} \Gamma_{j}$ and $\operatorname{deg} t_{j}=2-\left|\Gamma_{j}\right|$.
- Since ρ is a bijection, choose a bounding pair (γ, b) such that

$$
\rho([\gamma, b]):=\left([\gamma], \int_{L} b\right)=(\Gamma, s)
$$

- $\Omega(\gamma, b)$ is independent of representatives of $[(\gamma, b)]$, because of gauge equivalence.
- Define the Open Gromov-Witten Invariants $O G W_{\beta, k}: H^{*}(M, L ; \mathbb{R})^{\otimes I} \rightarrow \mathbb{R}$ by,

$$
\text { OGW }_{\beta, k}\left(\Gamma_{i_{1}}, \ldots, \Gamma_{i_{l}}\right):=\text { coefficient of } T^{\beta} \text { in }\left.\partial_{t_{i_{1}}} \ldots \partial_{t_{i_{l}}} \partial_{s}^{k} \Omega(\gamma, b)\right|_{s=t_{j}=0}
$$

and extending linearly to general input.

Definition of OGWs using bounding cochains

- Assuming the theorems above, we can define Open Gromov-Witten invariants of the pair (M, L). Take a basis $\Gamma_{0}, \ldots, \Gamma_{N}$ of $H^{*}(M, L ; \mathbb{R})$. Set $\Gamma:=\sum_{j=0}^{N} t_{j} \Gamma_{j}$ and $\operatorname{deg} t_{j}=2-\left|\Gamma_{j}\right|$.
- Since ρ is a bijection, choose a bounding pair (γ, b) such that

$$
\rho([\gamma, b]):=\left([\gamma], \int_{L} b\right)=(\Gamma, s)
$$

- $\Omega(\gamma, b)$ is independent of representatives of $[(\gamma, b)]$, because of gauge equivalence.
- Define the Open Gromov-Witten Invariants $O G W_{\beta, k}: H^{*}(M, L ; \mathbb{R})^{\otimes l} \rightarrow \mathbb{R}$ by,

$$
\text { OGW }_{\beta, k}\left(\Gamma_{i_{1}}, \ldots, \Gamma_{i_{l}}\right):=\text { coefficient of } T^{\beta} \text { in }\left.\partial_{t_{i_{1}}} \ldots \partial_{t_{i_{l}}} \partial_{s}^{k} \Omega(\gamma, b)\right|_{s=t_{j}=0}
$$

and extending linearly to general input.

- The OGWs defined this way are invariant with respect to ω-tame almost complex structures and representatives of the cohomology class of interior constraints $[\gamma]$, because of gauge equivalence.

Axioms of OGWs

- Kontsevich-Manin (1994) gave axioms that a Gromov-Witten theory should satisfy.
- Solomon-Tukachinsky showed $O G W_{\beta, k}$ defined above satisfy some of the Kontsevich-Manin axioms, including
- (1) Degree axiom: $O G W_{\beta, k}\left(A_{1}, \ldots, A_{l}\right)=0$ unless
$n-3+\mu(\beta)+k+2 l=k n+\sum_{j=1}^{l}\left|A_{j}\right|$
- (2) Fundamental class axiom:
$O G W_{\beta, k}\left(1, A_{1}, \ldots, A_{I-1}\right)= \begin{cases}-1 & \text { when }(k, I, \beta)=\left(1,1, \beta_{0}\right) \\ 0 & \text { otherwise }\end{cases}$
- (3) Deformation invariance: $O G W_{\beta, k}$ remain constant under deformations of the symplectic form ω, for which L remains Lagrangian.

Properties of $\mathfrak{q}_{k, l}$

- In the definition of

$$
\mathfrak{m}_{k}^{\gamma}\left(\alpha_{1}, \ldots, \alpha_{k}\right):=\delta_{k, 1} d \alpha_{1}+\sum_{\beta \in \Pi, l \geq 0} \frac{T^{\beta}}{I!}\left(e v b_{0}\right)_{*}\left(\bigwedge_{j=1}^{l}\left(e v i_{j}^{\beta}\right)^{*} \gamma \wedge \bigwedge_{j=1}^{k}\left(e v b_{j}^{\beta}\right)^{*} \alpha_{j}\right)
$$

it is useful for calculational purposes to isolate terms in the sum and define

$$
\mathfrak{q}_{k, l}^{\beta}\left(\alpha_{1}, \ldots, \alpha_{k} ; \gamma_{1}, \ldots, \gamma_{l}\right):=\left(e v b_{0}\right)_{*}\left(\bigwedge_{j=1}^{l}\left(e v i_{j}^{\beta}\right)^{*} \gamma_{j} \wedge \bigwedge_{j=1}^{k}\left(e v b_{j}^{\beta}\right)^{*} \alpha_{j}\right)
$$

for $(k, I, \beta) \neq\left(1,0, \beta_{0}\right)$ and $\mathfrak{q}_{1,0}^{\beta_{0}}(\alpha)=d \alpha$, so that

$$
\mathfrak{m}_{k}^{\gamma}\left(\alpha_{1}, \ldots, \alpha_{k}\right):=\sum_{\beta \in \Pi, l \geq 0} \frac{T^{\beta}}{I!} \mathfrak{q}_{k, l}^{\beta}\left(\alpha_{1}, \ldots, \alpha_{k} ; \gamma, \ldots, \gamma\right)
$$

Properties of $\mathfrak{q}_{k, l}$

- The operators $\mathfrak{q}_{k, l}^{\beta}$ satisfy the following properties:
- Fundamental class: $\mathfrak{q}_{k, l}^{\beta}\left(\alpha_{1}, \ldots, \alpha_{k} ; 1, \gamma_{1}, \ldots, \gamma_{I-1}\right)=-1$ when
$(k, l, \beta)= \begin{cases}-1 & \text { if }\left(0,1, \beta_{0}\right) \\ 0 & \text { otherwise }\end{cases}$
- Energy zero: $\mathfrak{q}_{k, l}^{\beta_{0}}\left(\alpha_{1}, \ldots, \alpha_{k} ; \gamma_{1}, \ldots, \gamma_{l}\right)= \begin{cases}d \alpha_{1} & \text { if }(k, l)=(1,0) \\ (-1)^{\operatorname{deg} \alpha_{1}} \alpha_{1} \wedge \alpha_{2} & \text { if }(k, l)=(2,0) \\ -\left.\gamma_{1}\right|_{L} & \text { if }(k, l)=(0,1) \\ 0 & \text { otherwise }\end{cases}$
- Top Degree: Suppose $(k, I, \beta) \notin\left\{\left(1,0, \beta_{0}\right),\left(0,1, \beta_{0}\right),\left(2,0, \beta_{0}\right)\right\}$, then $\left(\mathfrak{q}_{k, I}^{\beta}(\alpha ; \gamma)\right)_{n}=0$ for all lists α, γ.

Gauge equivalence

- Work with a family of almost complex structures $\left\{J_{t}\right\}$ and a slightly bigger moduli space:

$$
\widetilde{\mathcal{M}}_{k+1, I}(\beta):=\left\{(t, u, \vec{z}, \vec{w}) \mid(u, \vec{z}, \vec{w}) \in \widetilde{\mathcal{M}}_{k+1, I}\left(\beta ; J_{t}\right)\right\}
$$

Gauge equivalence

- Work with a family of almost complex structures $\left\{J_{t}\right\}$ and a slightly bigger moduli space:

$$
\widetilde{\mathcal{M}}_{k+1, l}(\beta):=\left\{(t, u, \vec{z}, \vec{w}) \mid(u, \vec{z}, \vec{w}) \in \widetilde{\mathcal{M}}_{k+1, l}\left(\beta ; J_{t}\right)\right\}
$$

- Have evaluation maps $\widetilde{\operatorname{evb}_{j}}: \widetilde{\mathcal{M}}_{k+1, I}(\beta) \rightarrow I \times L$, and $\widetilde{\text { evij }_{j}}$.

Gauge equivalence

- Work with a family of almost complex structures $\left\{J_{t}\right\}$ and a slightly bigger moduli space:

$$
\widetilde{\mathcal{M}}_{k+1, l}(\beta):=\left\{(t, u, \vec{z}, \vec{w}) \mid(u, \vec{z}, \vec{w}) \in \widetilde{\mathcal{M}}_{k+1, l}\left(\beta ; J_{t}\right)\right\}
$$

- Have evaluation maps $\widetilde{\operatorname{evb}_{j}}: \widetilde{\mathcal{M}}_{k+1, I}(\beta) \rightarrow I \times L$, and $\widetilde{e v i_{j}}$.
- Can similarly define A^{∞} structure maps $\widetilde{\mathfrak{m}}_{k}: A^{*}([0,1] \times L, \Lambda)^{\otimes k} \rightarrow A^{*}([0,1] \times L, \Lambda)$.

Gauge equivalence

- Work with a family of almost complex structures $\left\{J_{t}\right\}$ and a slightly bigger moduli space:

$$
\widetilde{\mathcal{M}}_{k+1, l}(\beta):=\left\{(t, u, \vec{z}, \vec{w}) \mid(u, \vec{z}, \vec{w}) \in \widetilde{\mathcal{M}}_{k+1, l}\left(\beta ; J_{t}\right)\right\}
$$

- Have evaluation maps $\widetilde{\operatorname{evb}_{j}}: \widetilde{\mathcal{M}}_{k+1, I}(\beta) \rightarrow I \times L$, and $\widetilde{e v i j}$.
- Can similarly define A^{∞} structure maps $\widetilde{\mathfrak{m}}_{k}: A^{*}([0,1] \times L, \Lambda)^{\otimes k} \rightarrow A^{*}([0,1] \times L, \Lambda)$.
- A bounding pair $(\gamma, b)_{J}$ is gauge equivalent to a bounding pair $\left(\gamma^{\prime}, b^{\prime}\right)_{J^{\prime}}$ if $\exists \widetilde{b} \in A^{*}([0,1] \times L ; \Lambda)$ satisfying $\left.\widetilde{b}\right|_{\{0\} \times L}=b,\left.\widetilde{b}\right|_{\{1\} \times L}=b^{\prime}$ and

$$
\sum_{k \geq 0} \tilde{\mathfrak{m}}_{k}\left(\widetilde{b}^{\otimes k}\right)=c \cdot 1
$$

and $\exists \widetilde{\gamma} \in A^{*}([0,1] \times X,[0,1] \times L ; \Lambda)$ with $d \widetilde{\gamma}=0$ and $\left.\widetilde{\gamma}\right|_{\{0\} \times X}=\gamma,\left.\widetilde{\gamma}\right|_{\{1\} \times X}=\gamma^{\prime}$

Proof of classification of bounding pairs (for cohomology spheres)

- We first show ρ is well defined: assuming $n>0$, if $(\gamma, b) \sim\left(\gamma^{\prime}, b^{\prime}\right)$, then $[\gamma]=\left[\gamma^{\prime}\right]$ and $\int_{L} b=\int_{L^{\prime}} b^{\prime}$.
- Proof of well-definedness: By definition of gauge equivalence, there exist $\widetilde{\gamma} \in A^{*}([0,1] \times X,[0,1] \times L ; \Lambda)$ with $d \widetilde{\gamma}=0$ and $\left.\widetilde{\gamma}\right|_{\{0\} \times x}=\gamma,\left.\widetilde{\gamma}\right|_{\{1\} \times X}=\gamma^{\prime}$. By a generalized Stokes' theorem on orbifolds with corners, $[\gamma]=\left[\gamma^{\prime}\right]$. We also have $\widetilde{b} \in A^{*}([0,1] \times L ; \Lambda)$ with $\left.\widetilde{b}\right|_{\{0\} \times L}=b,\left.\widetilde{b}\right|_{\{1\} \times L}=b^{\prime}$, and satisfying the Maurer-Cartan equation.

Proof of classification of bounding pairs (for cohomology spheres), cont'd

- We have

$$
\begin{aligned}
\int_{L} b^{\prime}-\int_{L} b=\int_{\partial(I \times L)} \tilde{b} & =\int_{I \times L} d \tilde{b} \\
& =\int_{I \times L}\left(\tilde{c} \cdot 1-\sum_{(k, l, \beta) \neq\left(1,0, \beta_{0}\right)} \tilde{\mathfrak{q}}_{k, l}\left(\tilde{b}^{k} ; \tilde{\gamma}^{k}\right)\right)_{n+1} \quad \text { (Maurer-Cartan) } \\
& =\int_{I \times L}(\tilde{c} \cdot 1)_{n+1}-\left(\tilde{\mathfrak{q}}_{2,0}\left(\tilde{b}^{2}\right)+\tilde{\mathfrak{q}}_{0,1}(\gamma)\right)_{n+1} \quad \quad \text { (Top Degree) } \\
& =\int_{I \times L}(\tilde{c} \cdot 1)_{n+1}-\left(\tilde{b} \wedge \tilde{b}-\left.\tilde{\gamma}\right|_{I \times L}\right)_{n+1}
\end{aligned}
$$

- This equals zero since $\operatorname{deg} \tilde{b}=1$ and $\tilde{\gamma} \in A^{*}(I \times X, I \times L), d \tilde{\gamma}=0$. Since $\tilde{c} \in A^{*}([0,1] ; \Lambda)$ and $n>0,(\tilde{c})_{n+1}=0$. Thus, the map ρ is well defined.

Definition of the obstruction classes

- To prove classification or bijectivity of the map ρ, we define obstruction classes motivated by [FOOO]. The vanishing of obstruction classes signifies the existence of a bounding cochain.
- There exists a natural valuation $\nu: R:=\Lambda\left[\left[s, t_{0}, \ldots, t_{N}\right]\right] \rightarrow \mathbb{R}_{\geq 0}$ defined by

$$
\nu\left(\sum_{j=0}^{\infty} a_{j} T^{\beta_{j}} s^{k_{j}} \prod_{a=0}^{N} t_{a}^{l_{a j}}\right):=\inf _{j, a_{j} \neq 0}\left(\omega\left(\beta_{j}\right)+k_{j}+\sum_{a=0}^{N} l_{a j}\right)
$$

- Denote $F^{E} R$ the filtration on R defined by $\lambda \in F^{E} R \Longleftrightarrow \nu(\lambda)>E$. The filtration defines a topology on R : a sequence $\left\{x_{i}\right\}$ converges in R if $\forall E \in \mathbb{R}_{\geq 0}, \exists N$ such that for $\forall n \geq N, a_{n} \in F^{E} R$.

Definition of the obstruction classes

- Given $b \in C:=A^{*}(L) \otimes \Lambda\left[\left[s, t_{0}, \ldots, t_{N}\right]\right]$, write $b=\sum_{j=0}^{\infty} \lambda_{j} b_{j}$ with $b_{j} \in A^{*}(L), \lambda_{j}=T^{\beta_{j}} S^{k_{j}} \prod_{a=0}^{N} t_{a}^{l_{a j}}$. We can order the $\left\{\lambda_{j}\right\}_{j=0}^{\infty}$ such that if $i \leq j$, then $\nu\left(\lambda_{i}\right) \leq \nu\left(\lambda_{j}\right)$.

Definition of the obstruction classes

- Given $b \in C:=A^{*}(L) \otimes \Lambda\left[\left[s, t_{0}, \ldots, t_{N}\right]\right]$, write $b=\sum_{j=0}^{\infty} \lambda_{j} b_{j}$ with $b_{j} \in A^{*}(L), \lambda_{j}=T^{\beta_{j}} s^{k_{j}} \prod_{a=0}^{N} t_{a}^{I_{j}}$. We can order the $\left\{\lambda_{j}\right\}_{j=0}^{\infty}$ such that if $i \leq j$, then $\nu\left(\lambda_{i}\right) \leq \nu\left(\lambda_{j}\right)$.
- Define the index κ_{l} to be the largest index of $\left\{\lambda_{j}\right\}_{j=0}^{\infty}$ such that $\nu\left(\lambda_{\kappa_{l}}\right)=E_{l}$.

Definition of the obstruction classes

- Given $b \in C:=A^{*}(L) \otimes \Lambda\left[\left[s, t_{0}, \ldots, t_{N}\right]\right]$, write $b=\sum_{j=0}^{\infty} \lambda_{j} b_{j}$ with $b_{j} \in A^{*}(L), \lambda_{j}=T^{\beta_{j}} S^{k_{j}} \prod_{a=0}^{N} t_{a}^{l_{a j}}$. We can order the $\left\{\lambda_{j}\right\}_{j=0}^{\infty}$ such that if $i \leq j$, then $\nu\left(\lambda_{i}\right) \leq \nu\left(\lambda_{j}\right)$.
- Define the index κ_{l} to be the largest index of $\left\{\lambda_{j}\right\}_{j=0}^{\infty}$ such that $\nu\left(\lambda_{\kappa_{l}}\right)=E_{l}$.
- Suppose we have a cochain $b_{(I)} \in C$ that solves the Maurer-Cartan equation modulo terms in $F^{E_{l}} C$, i.e.

$$
\mathfrak{m}^{\gamma}\left(e^{b_{(I)}}\right) \equiv c_{(I)} \cdot 1\left(\bmod F^{E_{l}} C\right)
$$

Definition of the obstruction classes

- Given $b \in C:=A^{*}(L) \otimes \Lambda\left[\left[s, t_{0}, \ldots, t_{N}\right]\right]$, write $b=\sum_{j=0}^{\infty} \lambda_{j} b_{j}$ with $b_{j} \in A^{*}(L), \lambda_{j}=T^{\beta_{j}} S^{k_{j}} \prod_{a=0}^{N} t_{a}^{l_{a j}}$. We can order the $\left\{\lambda_{j}\right\}_{j=0}^{\infty}$ such that if $i \leq j$, then $\nu\left(\lambda_{i}\right) \leq \nu\left(\lambda_{j}\right)$.
- Define the index κ_{l} to be the largest index of $\left\{\lambda_{j}\right\}_{j=0}^{\infty}$ such that $\nu\left(\lambda_{\kappa_{l}}\right)=E_{l}$.
- Suppose we have a cochain $b_{(I)} \in C$ that solves the Maurer-Cartan equation modulo terms in $F^{E_{l}} C$, i.e.

$$
\mathfrak{m}^{\gamma}\left(e^{b_{(I)}}\right) \equiv c_{(I)} \cdot 1\left(\bmod F^{E_{l}} C\right)
$$

- Define the obstruction classes $o_{j} \in A^{*}(L)$ for $j=\kappa_{l}+1 \ldots, \kappa_{l+1}$ to be,

$$
o_{j}:=\text { coefficient of } \lambda_{j} \text { in } \mathfrak{m}^{\gamma}\left(e^{b_{(l)}}\right)
$$

Definition of the obstruction classes

- Given $b \in C:=A^{*}(L) \otimes \Lambda\left[\left[s, t_{0}, \ldots, t_{N}\right]\right]$, write $b=\sum_{j=0}^{\infty} \lambda_{j} b_{j}$ with $b_{j} \in A^{*}(L), \lambda_{j}=T^{\beta_{j}} S^{k_{j}} \prod_{a=0}^{N} t_{a}^{l_{a j}}$. We can order the $\left\{\lambda_{j}\right\}_{j=0}^{\infty}$ such that if $i \leq j$, then $\nu\left(\lambda_{i}\right) \leq \nu\left(\lambda_{j}\right)$.
- Define the index κ_{l} to be the largest index of $\left\{\lambda_{j}\right\}_{j=0}^{\infty}$ such that $\nu\left(\lambda_{\kappa_{l}}\right)=E_{l}$.
- Suppose we have a cochain $b_{(I)} \in C$ that solves the Maurer-Cartan equation modulo terms in $F^{E_{l}} C$, i.e.

$$
\mathfrak{m}^{\gamma}\left(e^{b_{(I)}}\right) \equiv c_{(I)} \cdot 1\left(\bmod F^{E_{I}} C\right)
$$

- Define the obstruction classes $o_{j} \in A^{*}(L)$ for $j=\kappa_{l}+1 \ldots, \kappa_{l+1}$ to be,

$$
o_{j}:=\text { coefficient of } \lambda_{j} \text { in } \mathfrak{m}^{\gamma}\left(e^{b_{(l)}}\right)
$$

- The o_{j} are closed and satisfy $\operatorname{deg} o_{j}=2-\operatorname{deg} \lambda_{j}$.

Proof of classification of bounding pairs (for cohomology spheres), cont'd

- We prove the following proposition, which shows ρ is surjective: assuming $H^{*}(L ; \mathbb{R}) \cong H^{*}\left(S^{n} ; \mathbb{R}\right)$, then for any closed $\gamma \in\left(\mathcal{I}_{Q} D\right)_{2}$ and any $a \in\left(\mathcal{I}_{R}\right)_{1-n}$, there exists a bounding cochain b for \mathfrak{m}^{γ} such that $\int_{L} b=a$.

Proof of classification of bounding pairs (for cohomology spheres), cont'd

- We prove the following proposition, which shows ρ is surjective: assuming $H^{*}(L ; \mathbb{R}) \cong H^{*}\left(S^{n} ; \mathbb{R}\right)$, then for any closed $\gamma \in\left(\mathcal{I}_{Q} D\right)_{2}$ and any $a \in\left(\mathcal{I}_{R}\right)_{1-n}$, there exists a bounding cochain b for \mathfrak{m}^{γ} such that $\int_{L} b=a$.
- Idea of proof: the assumption that L is a cohomology sphere ensures the obstruction classes exact. We can then inductively build a bounding cochain that satisfies the Maurer-Cartan equation modulo $F^{E_{l}} C$. Taking the limit as $I \rightarrow \infty$, we get an honest bounding cochain satisfying the Maurer-Cartan equation.

Proof of classification of bounding pairs (for cohomology spheres), cont'd

- Proof: For the base case, take a representative of the Poincaré dual of a point $b_{0} \in A^{n}(L)$. Set $b_{(0)}:=a \cdot b_{0} \in \mathcal{I}_{R} C$. By the energy zero property, $\mathfrak{m}^{\gamma}\left(e^{b_{(0)}}\right) \equiv 0=c_{(0)} \cdot 1\left(\bmod F^{E_{0}} C\right)$ where $c_{(0)}:=0$. Clearly, $\int_{L} b_{(0)}=a, d b_{(0)}=0$.

Proof of classification of bounding pairs (for cohomology spheres), cont'd

- Proof: For the base case, take a representative of the Poincaré dual of a point $b_{0} \in A^{n}(L)$. Set $b_{(0)}:=a \cdot b_{0} \in \mathcal{I}_{R} C$. By the energy zero property, $\mathfrak{m}^{\gamma}\left(e^{b_{(0)}}\right) \equiv 0=c_{(0)} \cdot 1\left(\bmod F^{E_{0}} C\right)$ where $c_{(0)}:=0$. Clearly, $\int_{L} b_{(0)}=a, d b_{(0)}=0$.
- By induction, suppose we have $b_{(I)} \in C$ with $\operatorname{deg}_{C} b_{(I)}=1$, and

$$
\int_{L} b_{(I)}=a, \quad \mathfrak{m}^{\gamma}\left(e^{b_{(I)}}\right) \equiv c_{(I)} \cdot 1\left(\bmod F^{E_{0}} C\right)
$$

Proof of classification of bounding pairs (for cohomology spheres), cont'd

- Proof: For the base case, take a representative of the Poincaré dual of a point $b_{0} \in A^{n}(L)$. Set $b_{(0)}:=a \cdot b_{0} \in \mathcal{I}_{R} C$. By the energy zero property, $\mathfrak{m}^{\gamma}\left(e^{b_{(0)}}\right) \equiv 0=c_{(0)} \cdot 1\left(\bmod F^{E_{0}} C\right)$ where $c_{(0)}:=0$. Clearly, $\int_{L} b_{(0)}=a, d b_{(0)}=0$.
- By induction, suppose we have $b_{(I)} \in C$ with $\operatorname{deg}_{C} b_{(I)}=1$, and

$$
\int_{L} b_{(I)}=a, \quad \mathfrak{m}^{\gamma}\left(e^{b_{(I)}}\right) \equiv c_{(I)} \cdot 1\left(\bmod F^{E_{0}} C\right)
$$

- Take the obstruction chains o_{j} of $b_{(I)}$. We can choose forms $b_{j} \in A^{1-\operatorname{deg} \lambda_{j}}(L)$ such that $(-1)^{\operatorname{deg} \lambda_{j}} d b_{j}=-o_{j}$ for all $j \in\left\{\kappa_{l}+1, \ldots, \kappa_{l+1}\right\}$ with $\operatorname{deg} \lambda_{j} \neq 2$. If $\operatorname{deg} \lambda_{j}=2-n$, then $o_{j}=0$ since $\operatorname{deg} o_{j}=2-\operatorname{deg} \lambda_{j}$. Hence we can take $b_{j}=0$. If $2-n<\operatorname{deg} \lambda_{j}<2$, then $0<\left|o_{j}\right|<n$, so the assumption that L is a cohomology sphere shows existence of the b_{j}. For other possible values of $\operatorname{deg} \lambda_{j}, o_{j}=0$ by degree considerations, so we can again take $b_{j}=0$.

Proof of classification of bounding pairs (for cohomology spheres), cont'd

- The energy zero property gives us,

$$
b_{(I+1)}:=b_{(I)}+\sum_{\kappa_{/}+1 \leq j \leq \kappa_{l+1}, \operatorname{deg} \lambda_{j} \neq 2} \lambda_{j} b_{j}
$$

which satisfies $\mathfrak{m}^{\gamma}\left(e^{b_{(l+1)}}\right) \equiv c_{(I+1)} \cdot 1\left(\bmod F^{E_{l+1} C}\right)$ and $\int_{L} b_{l+1}=a$.

Proof of classification of bounding pairs (for cohomology spheres), cont'd

- The energy zero property gives us,

$$
b_{(I+1)}:=b_{(I)}+\sum_{\kappa_{l}+1 \leq j \leq \kappa_{l+1}, \operatorname{deg} \lambda_{j} \neq 2} \lambda_{j} b_{j}
$$

which satisfies $\mathfrak{m}^{\gamma}\left(e^{b_{(I+1)}}\right) \equiv c_{(I+1)} \cdot 1\left(\bmod F^{E_{I+1} C}\right)$ and $\int_{L} b_{l+1}=a$.

- We get a sequence $\left\{b_{(I)}\right\}_{l=0}^{\infty}$ that converges in the filtration topology. Thus, $b:=\lim _{l} b_{(I)}$ is our desired bounding cochain with $\mathfrak{m}^{\gamma}\left(e^{b}\right)=c \cdot 1$ and $\int_{L} b=a$.

Proof of classification of bounding pairs (for cohomology spheres), cont'd

- The energy zero property gives us,

$$
b_{(I+1)}:=b_{(I)}+\sum_{\kappa_{l}+1 \leq j \leq \kappa_{l+1}, \operatorname{deg} \lambda_{j} \neq 2} \lambda_{j} b_{j}
$$

which satisfies $\mathfrak{m}^{\gamma}\left(e^{b_{(I+1)}}\right) \equiv c_{(I+1)} \cdot 1\left(\bmod F^{E_{I+1} C}\right)$ and $\int_{L} b_{l+1}=a$.

- We get a sequence $\left\{b_{(I)}\right\}_{l=0}^{\infty}$ that converges in the filtration topology. Thus, $b:=\lim _{l} b_{(I)}$ is our desired bounding cochain with $\mathfrak{m}^{\gamma}\left(e^{b}\right)=c \cdot 1$ and $\int_{L} b=a$.
- Injectivity of ρ relies on a similar obstruction class argument.

Proof of the OGW axioms

- It is enough to prove the axioms for the basis elements as input. Without loss of generality, take $\Gamma_{0}=1, \Gamma_{1}, \ldots, \Gamma_{N} \in H_{2}(M, L ; \mathbb{R})$ as a basis.
- (Proof of degree axiom): The superpotential $\Omega(\gamma, b)$ is of degree $3-n$. The partial derivatives $\partial_{t_{i_{1}}} \ldots \partial_{t_{i_{l}}} \partial_{s}^{k}$ decrease the degree by $k \operatorname{deg} s+\sum_{j=1}^{l} 2-\left|\Gamma_{j}\right|$. Taking out T^{β} decreases the degree by $\mu(\beta)$. When setting the variables $s=t_{j}=0$, only the degree zero term remains. Thus $O G W_{\beta, k} \neq 0$ only if $(3-n)-k(1-n)-\left(\sum_{j=1}^{l} 2-\left|\Gamma_{j}\right|\right)-\mu(\beta)=0$.

Proofs of the OGW axioms, cont'd

- (Proof of fundamental class axiom): (We can assume $\partial_{t_{0}} b=0$) We have

$$
\begin{aligned}
(-1)^{n} \partial_{t_{0}} \Omega & =\sum_{k, l \geq 0} \frac{1}{I!(k+1)}\left\langle\partial_{t_{0}} \mathfrak{q}_{k, l}\left(b^{\otimes k} ; \gamma^{\otimes l}\right), b\right\rangle+\partial_{t_{0}} \mathfrak{m}_{-1}^{\gamma} \\
& =\sum_{k, l \geq 0} \frac{1}{(I-1)!(k+1)}\left\langle\mathfrak{q}_{k, l}\left(b^{k} ; 1 \otimes \gamma^{I-1}\right), b\right\rangle+0 \\
& =\left\langle\mathfrak{q}_{0,1}(; 1), b\right\rangle \\
& =(-1)^{n+1} T^{\beta_{0}} \int_{L} b:=(-1)^{n+1} T^{\beta_{0}} s
\end{aligned}
$$

- Thus, $\left.\partial_{J} \partial_{t_{0}} \Omega\right|_{s=t_{j}=0} \neq 0$ unless $J=\{s\}$, in which case it is $-T^{\beta_{0}}$. By definition, this means $O G W_{\beta_{0}, 1}(1)=-1$, and 0 otherwise.

Proof of the OGW axioms, continued

- (Proof of symplectic deformation invariance): Define Λ^{J} to be the J-dependent Novikov ring,

$$
\Lambda^{J}:=\left\{\sum_{i=0}^{\infty} a_{i} T^{\beta_{i}} \in \Lambda \mid \forall i, \exists \text { J-holomorphic disc representing } \beta_{i}\right\}
$$

Proof of the OGW axioms, continued

- (Proof of symplectic deformation invariance): Define Λ^{J} to be the J-dependent Novikov ring,

$$
\Lambda^{J}:=\left\{\sum_{i=0}^{\infty} a_{i} T^{\beta_{i}} \in \Lambda \mid \forall i, \exists \text { J-holomorphic disc representing } \beta_{i}\right\}
$$

- Take a neighborhood U of ω in which J is ω^{\prime}-tame for all $\omega^{\prime} \in U$. We can similarly define A^{∞} operations $\mathfrak{m}_{\gamma}^{J}$ that use the J-dependent Novikov ring. Furthermore, we can find a bounding pair (γ, b) such that b is a bounding cochain for $\mathfrak{m}_{\gamma}^{J}$, and $\left([\gamma], \int_{L} b\right)=(\Gamma, s)$.

Proof of the OGW axioms, continued

- (Proof of symplectic deformation invariance): Define Λ^{J} to be the J-dependent Novikov ring,

$$
\Lambda^{J}:=\left\{\sum_{i=0}^{\infty} a_{i} T^{\beta_{i}} \in \Lambda \mid \forall i, \exists \text { J-holomorphic disc representing } \beta_{i}\right\}
$$

- Take a neighborhood U of ω in which J is ω^{\prime}-tame for all $\omega^{\prime} \in U$. We can similarly define A^{∞} operations $\mathfrak{m}_{\gamma}^{J}$ that use the J-dependent Novikov ring. Furthermore, we can find a bounding pair (γ, b) such that b is a bounding cochain for $\mathfrak{m}_{\gamma}^{J}$, and $\left([\gamma], \int_{L} b\right)=(\Gamma, s)$.
- The bounding cochain b depends on ω^{\prime} only through Λ^{J}, which is the same for all $\omega^{\prime} \in U$ and J. Hence b is a bounding cochain for $\mathfrak{m}_{\gamma}^{J}$ for all $\omega^{\prime} \in U$.

Proof of the OGW axioms, continued

- (Proof of symplectic deformation invariance): Define Λ^{J} to be the J-dependent Novikov ring,

$$
\Lambda^{J}:=\left\{\sum_{i=0}^{\infty} a_{i} T^{\beta_{i}} \in \Lambda \mid \forall i, \exists \text { J-holomorphic disc representing } \beta_{i}\right\}
$$

- Take a neighborhood U of ω in which J is ω^{\prime}-tame for all $\omega^{\prime} \in U$. We can similarly define A^{∞} operations $\mathfrak{m}_{\gamma}^{J}$ that use the J-dependent Novikov ring. Furthermore, we can find a bounding pair (γ, b) such that b is a bounding cochain for $\mathfrak{m}_{\gamma}^{J}$, and $\left([\gamma], \int_{L} b\right)=(\Gamma, s)$.
- The bounding cochain b depends on ω^{\prime} only through Λ^{J}, which is the same for all $\omega^{\prime} \in U$ and J. Hence b is a bounding cochain for $\mathfrak{m}_{\gamma}^{J}$ for all $\omega^{\prime} \in U$.
- But b is a bounding cochain for the $\left\{\mathfrak{m}_{k}^{\gamma}\right\}$ in defining OGWs for all $\omega^{\prime} \in U$, since $\mathfrak{m}_{k}^{\gamma}$ only considers classes that can be represented by J-holomorphic dics. But this implies the superpotential $\Omega(\gamma, b)$ and hence $O G W_{\beta, k}$ is constant for all $\omega^{\prime} \in U$.

Final Remarks

- S-T showed that when there's an anti-symplectic involution, their definition of OGWs generalize Welshinger's and Georgieva's invariants.
- In a subsequent paper, S-T show their superpotential satisfy open WDVV equations.

Thanks!

