# Point-like Bounding Chains in Open Gromov-Witten Theory

#### Ben Zhou

July 3, 2023

• Let  $(M, \omega)$  be a 2*n*-dimensional symplectic manifold, J an  $\omega$ -tame almost complex structure.

- Let  $(M, \omega)$  be a 2*n*-dimensional symplectic manifold, J an  $\omega$ -tame almost complex structure.
- Closed Gromov-Witten theory seeks to count *J*-holomophic spheres *u* : S<sup>2</sup> → M in a curve class A ∈ H<sub>2</sub>(M; Z) intersecting prescribed cycles X<sub>i</sub> ⊂ M.

- Let  $(M, \omega)$  be a 2*n*-dimensional symplectic manifold, J an  $\omega$ -tame almost complex structure.
- Closed Gromov-Witten theory seeks to count *J*-holomophic spheres *u* : S<sup>2</sup> → M in a curve class A ∈ H<sub>2</sub>(M; Z) intersecting prescribed cycles X<sub>i</sub> ⊂ M.
- Define GW<sub>A,k</sub>(α<sub>1</sub>,..., α<sub>k</sub>) := ∫<sub>M<sub>0,k</sub>(A,J)</sub> ev<sub>1</sub><sup>\*</sup>α<sub>1</sub> ∧ ... ∧ ev<sub>k</sub><sup>\*</sup>α<sub>k</sub>, where M<sub>0,k</sub>(A, J) is the Gromov compactification of the moduli space of J-holomorphic spheres with k marked points, α<sub>i</sub> are Poincaré dual to X<sub>i</sub>, and (ev<sub>1</sub>,..., ev<sub>k</sub>) are evaluation maps of u at the k-marked points.

- Let  $(M, \omega)$  be a 2*n*-dimensional symplectic manifold, J an  $\omega$ -tame almost complex structure.
- Closed Gromov-Witten theory seeks to count *J*-holomophic spheres *u* : S<sup>2</sup> → M in a curve class A ∈ H<sub>2</sub>(M; Z) intersecting prescribed cycles X<sub>i</sub> ⊂ M.
- Define GW<sub>A,k</sub>(α<sub>1</sub>,..., α<sub>k</sub>) := ∫<sub>M<sub>0,k</sub>(A,J)</sub> ev<sub>1</sub><sup>\*</sup>α<sub>1</sub> ∧ ... ∧ ev<sub>k</sub><sup>\*</sup>α<sub>k</sub>, where M<sub>0,k</sub>(A, J) is the Gromov compactification of the moduli space of J-holomorphic spheres with k marked points, α<sub>i</sub> are Poincaré dual to X<sub>i</sub>, and (ev<sub>1</sub>,..., ev<sub>k</sub>) are evaluation maps of u at the k-marked points.
- The integral needs to be made sense of, since  $\overline{\mathcal{M}_{0,k}}(A, J)$  does not carry a fundamental class. (Methods such as pseudocycles, virtual fundamental classes, Kuranishi structures, polyfold theory, etc. have been used)

- Let  $(M, \omega)$  be a 2*n*-dimensional symplectic manifold, J an  $\omega$ -tame almost complex structure.
- Closed Gromov-Witten theory seeks to count *J*-holomophic spheres *u* : S<sup>2</sup> → M in a curve class A ∈ H<sub>2</sub>(M; Z) intersecting prescribed cycles X<sub>i</sub> ⊂ M.
- Define  $GW_{A,k}(\alpha_1, \ldots, \alpha_k) := \int_{\overline{\mathcal{M}}_{0,k}(A,J)} ev_1^* \alpha_1 \wedge \ldots \wedge ev_k^* \alpha_k$ , where  $\overline{\mathcal{M}}_{0,k}(A,J)$  is the Gromov compactification of the moduli space of *J*-holomorphic spheres with *k* marked points,  $\alpha_i$  are Poincaré dual to  $X_i$ , and  $(ev_1, \ldots, ev_k)$  are evaluation maps of *u* at the *k*-marked points.
- The integral needs to be made sense of, since  $\overline{\mathcal{M}_{0,k}}(A, J)$  does not carry a fundamental class. (Methods such as pseudocycles, virtual fundamental classes, Kuranishi structures, polyfold theory, etc. have been used)
- If the boundary strata from the Gromov compactification have **codimension**  $\geq$  **2**, then Gromov-Witten invariants can be defined. They depend neither on the almost complex structure J as long as it tames  $\omega$ , nor on the representatives of the cohomology classes  $\alpha_i$ .

# Open Gromov-Witten Theory (OGW)

• Let *L* be a Lagrangian submanifold of *M*.

# Open Gromov-Witten Theory (OGW)

- Let *L* be a Lagrangian submanifold of *M*.
- Open Gromov-Witten theory seeks to count J-holomorphic discs u : (D<sup>2</sup>, S<sup>1</sup>) → (M, L) with boundary on L and in a curve class β ∈ H<sub>2</sub>(M, L), that have prescribed intersection data in M.

# Open Gromov-Witten Theory (OGW)

- Let L be a Lagrangian submanifold of M.
- Open Gromov-Witten theory seeks to count J-holomorphic discs u : (D<sup>2</sup>, S<sup>1</sup>) → (M, L) with boundary on L and in a curve class β ∈ H<sub>2</sub>(M, L), that have prescribed intersection data in M.
- Unlike in the closed case, there exist boundary strata of **codimension 1** in the moduli space of *J*-holomorphic discs.

- Let *L* be a Lagrangian submanifold of *M*.
- Open Gromov-Witten theory seeks to count J-holomorphic discs u : (D<sup>2</sup>, S<sup>1</sup>) → (M, L) with boundary on L and in a curve class β ∈ H<sub>2</sub>(M, L), that have prescribed intersection data in M.
- Unlike in the closed case, there exist boundary strata of **codimension 1** in the moduli space of *J*-holomorphic discs.
- Intuitively, because of Stokes' theorem, you would not expect the integral above to be independent of the representatives of cohomology classes being integrated anymore.

# Some previous work in defining Open Gromov Witten invariants

- Liu defined OGWs for (M, L) carrying an  $S^1$  action (2002)
- Using anti-symplectic involution, Welschinger defined counts of real rational *J*-holomorphic curves in dimensions 2,3 (2005)
- Fukaya defined OGWs for Calabi-Yau 3-fold and Maslov 0 Lagrangian (2011)
- Georgieva extended Welschinger's work to higher, odd dimensions (2016)

### Bounding cochains in Open Gromov Witten invariants

- Fukaya introduced bounding cochains to show Lagrangian Floer theory can be defined in more general settings.
- The bounding cochain deforms the Floer coboundary operator to one that squares to 0, and "cancels" codimension 1 bubbling.
- This presentation seeks to explain Solomon-Tukachinsky's approach of **defining OGWs** using bounding cochains.



• Let (*M*, ω, *J*) be a 2*n*-dimensional symplectic manifold with a ω-tame almost complex structure *J*, and a **relatively spin** Lagrangian *L*.



- Let (*M*, ω, *J*) be a 2*n*-dimensional symplectic manifold with a ω-tame almost complex structure *J*, and a **relatively spin** Lagrangian *L*.
- Let  $\Pi = H_2(X, L)/S_L$  where  $S_L$  is a subgroup of ker  $(\omega \oplus \mu) : H_2(X, L) \to \mathbb{R} \oplus \mathbb{Z}$ . Denote  $\beta_0 \in \Pi$  to be the zero element.



- Let (M, ω, J) be a 2n-dimensional symplectic manifold with a ω-tame almost complex structure J, and a relatively spin Lagrangian L.
- Let  $\Pi = H_2(X, L)/S_L$  where  $S_L$  is a subgroup of ker  $(\omega \oplus \mu) : H_2(X, L) \to \mathbb{R} \oplus \mathbb{Z}$ . Denote  $\beta_0 \in \Pi$  to be the zero element.
- Define the Novikov field Λ = {Σ<sub>i=0</sub><sup>∞</sup> a<sub>i</sub> T<sup>β<sub>i</sub></sup> | a<sub>i</sub> ∈ ℝ, β<sub>i</sub> ∈ Π, ω(β<sub>i</sub>) ≥ 0, lim<sub>i→∞</sub> ω(β<sub>i</sub>) = ∞} and Λ<sup>+</sup> = {Σ<sub>i=0</sub><sup>∞</sup> a<sub>i</sub> T<sup>β<sub>i</sub></sup> ∈ Λ|ω(β<sub>i</sub>) > 0}.

- Let  $(M, \omega, J)$  be a 2*n*-dimensional symplectic manifold with a  $\omega$ -tame almost complex structure *J*, and a **relatively spin** Lagrangian *L*.
- Let  $\Pi = H_2(X, L)/S_L$  where  $S_L$  is a subgroup of ker  $(\omega \oplus \mu) : H_2(X, L) \to \mathbb{R} \oplus \mathbb{Z}$ . Denote  $\beta_0 \in \Pi$  to be the zero element.
- Define the Novikov field Λ = {Σ<sub>i=0</sub><sup>∞</sup> a<sub>i</sub> T<sup>β<sub>i</sub></sup> | a<sub>i</sub> ∈ ℝ, β<sub>i</sub> ∈ Π, ω(β<sub>i</sub>) ≥ 0, lim<sub>i→∞</sub> ω(β<sub>i</sub>) = ∞} and Λ<sup>+</sup> = {Σ<sub>i=0</sub><sup>∞</sup> a<sub>i</sub> T<sup>β<sub>i</sub></sup> ∈ Λ|ω(β<sub>i</sub>) > 0}.
- Denote cochains on L by  $A^*(L)$ , and cochains on X relative to L by  $A^*(X, L)$ .

- Let (*M*, ω, *J*) be a 2*n*-dimensional symplectic manifold with a ω-tame almost complex structure *J*, and a **relatively spin** Lagrangian *L*.
- Let  $\Pi = H_2(X, L)/S_L$  where  $S_L$  is a subgroup of ker  $(\omega \oplus \mu) : H_2(X, L) \to \mathbb{R} \oplus \mathbb{Z}$ . Denote  $\beta_0 \in \Pi$  to be the zero element.
- Define the Novikov field Λ = {Σ<sub>i=0</sub><sup>∞</sup> a<sub>i</sub> T<sup>β<sub>i</sub></sup> | a<sub>i</sub> ∈ ℝ, β<sub>i</sub> ∈ Π, ω(β<sub>i</sub>) ≥ 0, lim<sub>i→∞</sub> ω(β<sub>i</sub>) = ∞} and Λ<sup>+</sup> = {Σ<sub>i=0</sub><sup>∞</sup> a<sub>i</sub> T<sup>β<sub>i</sub></sup> ∈ Λ|ω(β<sub>i</sub>) > 0}.
- Denote cochains on L by  $A^*(L)$ , and cochains on X relative to L by  $A^*(X, L)$ .
- Introduce formal variables  $s, t_0, \ldots, t_N$ .

#### Moduli spaces involved

• **Gromov Compactness** states that for a sequence of *J*-holomorphic discs with uniformly bounded energy, there exists a subsequence that converges up to *PSL*<sub>2</sub>(ℝ) action to an at worst nodal *J*-holomorphic disc with components that are discs or spheres.

#### Moduli spaces involved

- **Gromov Compactness** states that for a sequence of *J*-holomorphic discs with uniformly bounded energy, there exists a subsequence that converges up to *PSL*<sub>2</sub>(ℝ) action to an at worst nodal *J*-holomorphic disc with components that are discs or spheres.
- When there are marked points, the subsequence converges to a stable nodal *J*-holomorphic disc, i.e.

2(# of interior marked and nodal points )+(# of boundary marked and nodal points )  $\geq$  3

#### Moduli spaces involved

- **Gromov Compactness** states that for a sequence of *J*-holomorphic discs with uniformly bounded energy, there exists a subsequence that converges up to  $PSL_2(\mathbb{R})$  action to an at worst nodal *J*-holomorphic disc with components that are discs or spheres.
- When there are marked points, the subsequence converges to a stable nodal *J*-holomorphic disc, i.e.

2(# of interior marked and nodal points )+(# of boundary marked and nodal points )  $\geq$  3

 Denote M<sub>k+1,l</sub>(β) to be the moduli space of g = 0, J-holomorphic stable maps u : (Σ, ∂Σ) → (M, L) with 1 boundary component, k + 1 boundary marked points, and l interior marked points. Let evb<sub>j</sub> : M<sub>k+1,l</sub>(β) → L be the evaluation map at the b<sub>j</sub> boundary marked point, and evi<sub>j</sub> : M<sub>k+1,l</sub>(β) → M be the evaluation map at the i<sub>j</sub> interior marked point. •  $\mathcal{M}_{k+1,l}(\beta)$  has virtual dimension  $n-3+\mu(\beta)+k+2l$ . It has codimension 1 boundary.

- $\mathcal{M}_{k+1,l}(\beta)$  has virtual dimension  $n-3+\mu(\beta)+k+2l$ . It has codimension 1 boundary.
- The codimension 1 boundary we want to consider are

- $\mathcal{M}_{k+1,l}(\beta)$  has virtual dimension  $n-3+\mu(\beta)+k+2l$ . It has codimension 1 boundary.
- The codimension 1 boundary we want to consider are
- Assume M<sub>k+1,l</sub>(β) is a smooth orbifold with corners, and the evaluation maps are proper submersions. The latter assumption will allow us to define pushforward operations with the evaluation map. This holds for (CP<sup>n</sup>, RP<sup>n</sup>).

- $\mathcal{M}_{k+1,l}(\beta)$  has virtual dimension  $n-3+\mu(\beta)+k+2l$ . It has codimension 1 boundary.
- $\bullet\,$  The codimension 1 boundary we want to consider are
- Assume M<sub>k+1,l</sub>(β) is a smooth orbifold with corners, and the evaluation maps are proper submersions. The latter assumption will allow us to define pushforward operations with the evaluation map. This holds for (CP<sup>n</sup>, RP<sup>n</sup>).
- The relative spin condition on L makes  $\mathcal{M}_{k+1,l}(\beta)$  orientable.

#### $A^{\infty}$ algebra associated to cochains of L

• Let  $R := \Lambda[[s, t_0, \dots, t_N]]$  and  $Q := \mathbb{R}[t_0, \dots, t_N]$ . Take the ideals  $\mathcal{I}_R := \langle s, t_0, \dots, t_N \rangle \lhd R$  and  $\mathcal{I}_Q := \langle t_0, \dots, t_N \rangle \lhd Q$ .

#### $A^\infty$ algebra associated to cochains of L

- Let  $R := \Lambda[[s, t_0, \dots, t_N]]$  and  $Q := \mathbb{R}[t_0, \dots, t_N]$ . Take the ideals  $\mathcal{I}_R := \langle s, t_0, \dots, t_N \rangle \lhd R$  and  $\mathcal{I}_Q := \langle t_0, \dots, t_N \rangle \lhd Q$ .
- Let  $C := A^*(L) \otimes R$  and  $D := A^*(X, L) \otimes Q$ . Choose  $\gamma \in \mathcal{I}_Q A^*(X, L; Q)$  with  $d\gamma = 0$ , deg  $\gamma = 2$ . Define the  $A^{\infty}$  structure maps  $\mathfrak{m}_k^{\gamma} : C^{\otimes k} \to C$  for  $k \ge 0$  by

$$\mathfrak{m}_{k}^{\gamma}(\alpha_{1},\ldots,\alpha_{k}):=\delta_{k,1}d\alpha_{1}+\sum_{\beta\in\Pi,l\geq0}\frac{T^{\beta}}{l!}(\textit{evb}_{0})_{*}(\bigwedge_{j=1}^{l}(\textit{evi}_{j}^{\beta})^{*}\gamma\wedge\bigwedge_{j=1}^{k}(\textit{evb}_{j}^{\beta})^{*}\alpha_{j})$$

#### $A^{\infty}$ algebra associated to cochains of L

- Let  $R := \Lambda[[s, t_0, \dots, t_N]]$  and  $Q := \mathbb{R}[t_0, \dots, t_N]$ . Take the ideals  $\mathcal{I}_R := \langle s, t_0, \dots, t_N \rangle \lhd R$  and  $\mathcal{I}_Q := \langle t_0, \dots, t_N \rangle \lhd Q$ .
- Let  $C := A^*(L) \otimes R$  and  $D := A^*(X, L) \otimes Q$ . Choose  $\gamma \in \mathcal{I}_Q A^*(X, L; Q)$  with  $d\gamma = 0$ , deg  $\gamma = 2$ . Define the  $A^{\infty}$  structure maps  $\mathfrak{m}_k^{\gamma} : C^{\otimes k} \to C$  for  $k \ge 0$  by

$$\mathfrak{m}_{k}^{\gamma}(\alpha_{1},\ldots,\alpha_{k}):=\delta_{k,1}d\alpha_{1}+\sum_{\beta\in\Pi,l\geq0}\frac{T^{\beta}}{l!}(\textit{evb}_{0})_{*}(\bigwedge_{j=1}^{l}(\textit{evi}_{j}^{\beta})^{*}\gamma\wedge\bigwedge_{j=1}^{k}(\textit{evb}_{j}^{\beta})^{*}\alpha_{j})$$

•  $(evb_0)_*$  is defined by **integration over the fiber**, as it's a proper submersion. The output is a chain given by all points that lie on a boundary of a disc with boundary constraints  $\alpha_1, \ldots, \alpha_k$  and *l* interior constraints  $\gamma$ , for all *l*.

#### $A^{\infty}$ algebra associated to cochains of L, cont'd

• The  $\{\mathfrak{m}_k\}_{k=0}^{\infty}$  satisfy the  $A^{\infty}$  relations, i.e.

$$\sum_{k_1+k_2=k+1,1\leq i\leq k_1} (-1)^{\epsilon(\alpha)} \mathfrak{m}_{k_1}^{\gamma}(\alpha_1,\ldots,\alpha_{i-1},\mathfrak{m}_{k_2}^{\gamma}(\alpha_i,\ldots,\alpha_{i+k_2-1}),\alpha_{i+k_2},\ldots,\alpha_k) = 0$$

• Furthermore, define  $\mathfrak{m}_{-1}^{\gamma} := \sum_{\beta \in \Pi, l \geq 0} \frac{T^{\beta}}{l!} \int_{\mathcal{M}_{0,l}(\beta)} \bigwedge_{i=1}^{l} (evi_{j}^{\beta})^{*} \gamma$ 

### Bounding pairs and the superpotential

 Define (γ, b) to be a bounding pair with γ ∈ I<sub>Q</sub>A\*(X, L; Q), dγ = 0, deg γ = 2, and b ∈ I<sub>R</sub>C, deg<sub>C</sub> b = 1 if the Maurer-Cartan equation holds

$$\sum_{k\geq 0}\mathfrak{m}_k^\gamma(b^{\otimes k})=c\cdot 1$$

where 1 is the constant function on L and  $c \in \mathcal{I}_R$  with deg c = 2. Here b is called a **(weakly) bounding cochain**.

### Bounding pairs and the superpotential

Define (γ, b) to be a bounding pair with γ ∈ I<sub>Q</sub>A\*(X, L; Q), dγ = 0, deg γ = 2, and b ∈ I<sub>R</sub>C, deg<sub>C</sub> b = 1 if the Maurer-Cartan equation holds

$$\sum_{k\geq 0}\mathfrak{m}_k^\gamma(b^{\otimes k})=c\cdot 1$$

where 1 is the constant function on L and  $c \in \mathcal{I}_R$  with deg c = 2. Here b is called a **(weakly) bounding cochain**.

• Define the **superpotential** 

$$\Omega(\gamma,b) = \Omega_J(\gamma,b) := (-1)^n (\sum_{k \ge 0} \frac{1}{k+1} \langle \mathfrak{m}_k^{\gamma}(b^{\otimes k}), b \rangle + \mathfrak{m}_{-1}^{\gamma})$$

Here  $\langle \xi, \eta \rangle := (-1)^{|\eta|} \int_L \xi \wedge \eta$  is the Poincaré pairing.

## Bounding pairs and the superpotential

 Define (γ, b) to be a bounding pair with γ ∈ I<sub>Q</sub>A\*(X, L; Q), dγ = 0, deg γ = 2, and b ∈ I<sub>R</sub>C, deg<sub>C</sub> b = 1 if the Maurer-Cartan equation holds

$$\sum_{k\geq 0}\mathfrak{m}_k^\gamma(b^{\otimes k})=c\cdot 1$$

where 1 is the constant function on L and  $c \in \mathcal{I}_R$  with deg c = 2. Here b is called a **(weakly) bounding cochain**.

• Define the **superpotential** 

$$\Omega(\gamma,b) = \Omega_J(\gamma,b) := (-1)^n (\sum_{k \ge 0} \frac{1}{k+1} \langle \mathfrak{m}_k^{\gamma}(b^{\otimes k}), b \rangle + \mathfrak{m}_{-1}^{\gamma})$$

Here  $\langle \xi, \eta \rangle := (-1)^{|\eta|} \int_L \xi \wedge \eta$  is the Poincaré pairing.

• The superpotential is a function on the space of bounding pairs. Note *b* is not necessarily closed.

- Let (γ, b) be a bounding pair with respect to J, and (γ', b') a bounding pair with respect to J'. There exists an equivalence relation called gauge equivalence on bounding pairs that essentially constructs an isotopy between them.
- S-T showed the following,

#### Theorem (Invariance of the superpotential, S-T)

#### If $(\gamma, b) \sim (\gamma', b')$ , then $\Omega_J(\gamma, b) = \Omega_{J'}(\gamma', b')$

 In proving this invariance, need to consider curve classes β ∈ Im{(H<sub>2</sub>(X, L) → H<sub>1</sub>(L))} as a special case. "Cancel out" this possible degeneration by also considering moduli space of spheres with 1 marked point intersecting L.

# Classification of Bounding Pairs

• Define a map  $\rho$ : {bounding pairs}/  $\sim \rightarrow (\mathcal{I}_Q H^*(X, L; Q))_2 \oplus (\mathcal{I}_R)_{1-n}$ ,

$$\rho([\gamma, b]) := ([\gamma], \int_L b)$$

• In certain settings,  $\rho$  is bijective,

#### Theorem (Classification of bounding pairs, S-T)

Assume  $H^*(L; \mathbb{R}) \cong H^*(S^n; \mathbb{R})$ . Then  $\rho$  is bijective.

• Reason for the term "**point-like**": bounding cochain *b* is therefore determined up to gauge equivalence by its form part of degree *n*, which will be a multiple of the Poincaré dual of a point.

Assuming the theorems above, we can define Open Gromov-Witten invariants of the pair (M, L). Take a basis Γ<sub>0</sub>,..., Γ<sub>N</sub> of H<sup>\*</sup>(M, L; ℝ). Set Γ := Σ<sup>N</sup><sub>i=0</sub> t<sub>j</sub>Γ<sub>j</sub> and deg t<sub>j</sub> = 2 - |Γ<sub>j</sub>|.

- Assuming the theorems above, we can define Open Gromov-Witten invariants of the pair (M, L). Take a basis Γ<sub>0</sub>,..., Γ<sub>N</sub> of H<sup>\*</sup>(M, L; ℝ). Set Γ := Σ<sup>N</sup><sub>i=0</sub> t<sub>j</sub>Γ<sub>j</sub> and deg t<sub>j</sub> = 2 |Γ<sub>j</sub>|.
- Since  $\rho$  is a bijection, choose a bounding pair  $(\gamma, b)$  such that

$$\rho([\gamma, b]) := ([\gamma], \int_L b) = (\Gamma, s)$$

- Assuming the theorems above, we can define Open Gromov-Witten invariants of the pair (M, L). Take a basis Γ<sub>0</sub>,..., Γ<sub>N</sub> of H<sup>\*</sup>(M, L; ℝ). Set Γ := Σ<sup>N</sup><sub>i=0</sub> t<sub>j</sub>Γ<sub>j</sub> and deg t<sub>j</sub> = 2 |Γ<sub>j</sub>|.
- Since  $\rho$  is a bijection, choose a bounding pair  $(\gamma, b)$  such that

$$\rho([\gamma, b]) := ([\gamma], \int_L b) = (\Gamma, s)$$

•  $\Omega(\gamma, b)$  is independent of representatives of  $[(\gamma, b)]$ , because of gauge equivalence.

- Assuming the theorems above, we can define Open Gromov-Witten invariants of the pair (M, L). Take a basis Γ<sub>0</sub>,..., Γ<sub>N</sub> of H<sup>\*</sup>(M, L; ℝ). Set Γ := Σ<sup>N</sup><sub>i=0</sub> t<sub>j</sub>Γ<sub>j</sub> and deg t<sub>j</sub> = 2 |Γ<sub>j</sub>|.
- Since  $\rho$  is a bijection, choose a bounding pair  $(\gamma, b)$  such that

$$\rho([\gamma, b]) := ([\gamma], \int_L b) = (\Gamma, s)$$

- $\Omega(\gamma, b)$  is independent of representatives of  $[(\gamma, b)]$ , because of gauge equivalence.
- Define the **Open Gromov-Witten Invariants**  $OGW_{\beta,k}: H^*(M,L;\mathbb{R})^{\otimes l} \to \mathbb{R}$  by,

$$OGW_{eta,k}(\Gamma_{i_1},\ldots,\Gamma_{i_l}):= ext{coefficient}$$
 of  $\mathcal{T}^eta$  in  $\partial_{t_{i_1}}\ldots\partial_{t_{i_l}}\partial_s^k\Omega(\gamma,b)|_{s=t_j=0}$ 

and extending linearly to general input.

- Assuming the theorems above, we can define Open Gromov-Witten invariants of the pair (M, L). Take a basis Γ<sub>0</sub>,..., Γ<sub>N</sub> of H<sup>\*</sup>(M, L; ℝ). Set Γ := Σ<sup>N</sup><sub>i=0</sub> t<sub>j</sub>Γ<sub>j</sub> and deg t<sub>j</sub> = 2 |Γ<sub>j</sub>|.
- Since  $\rho$  is a bijection, choose a bounding pair  $(\gamma, b)$  such that

$$\rho([\gamma, b]) := ([\gamma], \int_L b) = (\Gamma, s)$$

- $\Omega(\gamma, b)$  is independent of representatives of  $[(\gamma, b)]$ , because of gauge equivalence.
- Define the **Open Gromov-Witten Invariants**  $OGW_{\beta,k}: H^*(M,L;\mathbb{R})^{\otimes l} \to \mathbb{R}$  by,

$$OGW_{eta,k}(\Gamma_{i_1},\ldots,\Gamma_{i_l}) := \mathsf{coefficient} \,\, \mathsf{of} \,\, \mathcal{T}^eta \,\, \mathsf{in} \,\, \partial_{t_{i_1}}\ldots\partial_{t_{i_l}}\partial_s^k \Omega(\gamma,b)|_{s=t_j=0}$$

and extending linearly to general input.

• The OGWs defined this way are invariant with respect to  $\omega$ -tame almost complex structures and representatives of the cohomology class of interior constraints [ $\gamma$ ], because of gauge equivalence.

- Kontsevich-Manin (1994) gave axioms that a Gromov-Witten theory should satisfy.
- Solomon-Tukachinsky showed  $OGW_{\beta,k}$  defined above satisfy some of the Kontsevich-Manin axioms, including
- (1) Degree axiom:  $OGW_{\beta,k}(A_1, \dots, A_l) = 0$  unless  $n 3 + \mu(\beta) + k + 2l = kn + \sum_{j=1}^l |A_j|$
- (2) Fundamental class axiom:

$$OGW_{eta,k}(1,A_1,\ldots,A_{l-1}) = egin{cases} -1 & ext{when } (k,l,eta) = (1,1,eta_0) \ 0 & ext{otherwise} \end{cases}$$

(3) Deformation invariance: OGW<sub>β,k</sub> remain constant under deformations of the symplectic form ω, for which L remains Lagrangian.

# Properties of $\mathfrak{q}_{k,l}$

• In the definition of

$$\mathfrak{m}_{k}^{\gamma}(\alpha_{1},\ldots,\alpha_{k}):=\delta_{k,1}d\alpha_{1}+\sum_{\beta\in\Pi,l\geq0}\frac{T^{\beta}}{l!}(evb_{0})_{*}(\bigwedge_{j=1}^{l}(evi_{j}^{\beta})^{*}\gamma\wedge\bigwedge_{j=1}^{k}(evb_{j}^{\beta})^{*}\alpha_{j})$$

it is useful for calculational purposes to isolate terms in the sum and define

$$\mathfrak{q}_{k,l}^{\beta}(\alpha_1,\ldots,\alpha_k;\gamma_1,\ldots,\gamma_l):=(\textit{evb}_0)_*(\bigwedge_{j=1}^l(\textit{evi}_j^{\beta})^*\gamma_j\wedge\bigwedge_{j=1}^k(\textit{evb}_j^{\beta})^*\alpha_j)$$

for  $(k, l, \beta) \neq (1, 0, \beta_0)$  and  $\mathfrak{q}_{1,0}^{\beta_0}(\alpha) = d\alpha$ , so that

$$\mathfrak{m}_{k}^{\gamma}(\alpha_{1},\ldots,\alpha_{k}):=\sum_{\beta\in\Pi,l\geq0}\frac{T^{\beta}}{l!}\mathfrak{q}_{k,l}^{\beta}(\alpha_{1},\ldots,\alpha_{k};\gamma,\ldots,\gamma)$$

# Properties of $q_{k,l}$

- The operators  $\mathfrak{q}_{k,l}^{\beta}$  satisfy the following properties:
- Fundamental class:  $q_{k,l}^{\beta}(\alpha_1, \dots, \alpha_k; 1, \gamma_1, \dots, \gamma_{l-1}) = -1$  when  $(k, l, \beta) = \begin{cases} -1 & \text{if } (0, 1, \beta_0) \\ 0 & \text{otherwise} \end{cases}$

• Energy zero: 
$$q_{k,l}^{\beta_0}(\alpha_1, \dots, \alpha_k; \gamma_1, \dots, \gamma_l) = \begin{cases} d\alpha_1 & \text{if } (k, l) = (1, 0) \\ (-1)^{\deg \alpha_1} \alpha_1 \wedge \alpha_2 & \text{if } (k, l) = (2, 0) \\ -\gamma_1|_L & \text{if } (k, l) = (0, 1) \\ 0 & \text{otherwise} \end{cases}$$

• **Top Degree**: Suppose  $(k, l, \beta) \notin \{(1, 0, \beta_0), (0, 1, \beta_0), (2, 0, \beta_0)\}$ , then  $(\mathfrak{q}_{k,l}^{\beta}(\alpha; \gamma))_n = 0$  for all lists  $\alpha, \gamma$ .

# Gauge equivalence

• Work with a family of almost complex structures  $\{J_t\}$  and a slightly bigger moduli space:

$$\widetilde{\mathcal{M}}_{k+1,l}(\beta) := \{(t, u, \overrightarrow{z}, \overrightarrow{w}) \mid (u, \overrightarrow{z}, \overrightarrow{w}) \in \widetilde{\mathcal{M}}_{k+1,l}(\beta; J_t)\}$$

# Gauge equivalence

• Work with a family of almost complex structures  $\{J_t\}$  and a slightly bigger moduli space:

$$\widetilde{\mathcal{M}}_{k+1,l}(eta) \coloneqq \{(t,u,\overrightarrow{z},\overrightarrow{w}) \mid (u,\overrightarrow{z},\overrightarrow{w}) \in \widetilde{\mathcal{M}}_{k+1,l}(eta;J_t)\}$$

• Have evaluation maps  $\widetilde{evb_j}: \widetilde{\mathcal{M}}_{k+1,l}(\beta) \to I \times L$ , and  $\widetilde{evi_j}$ .

# Gauge equivalence

• Work with a family of almost complex structures  $\{J_t\}$  and a slightly bigger moduli space:

$$\widetilde{\mathcal{M}}_{k+1,l}(eta) \coloneqq \{(t,u,\overrightarrow{z},\overrightarrow{w}) \mid (u,\overrightarrow{z},\overrightarrow{w}) \in \widetilde{\mathcal{M}}_{k+1,l}(eta;J_t)\}$$

- Have evaluation maps  $\widetilde{evb_j} : \widetilde{\mathcal{M}}_{k+1,l}(\beta) \to l \times L$ , and  $\widetilde{evi_j}$ .
- Can similarly define  $A^{\infty}$  structure maps  $\widetilde{\mathfrak{m}}_k : A^*([0,1] \times L, \Lambda)^{\otimes k} \to A^*([0,1] \times L, \Lambda)$ .

• Work with a family of almost complex structures  $\{J_t\}$  and a slightly bigger moduli space:

$$\widetilde{\mathcal{M}}_{k+1,l}(eta) := \{(t,u,\overrightarrow{z},\overrightarrow{w}) \mid (u,\overrightarrow{z},\overrightarrow{w}) \in \widetilde{\mathcal{M}}_{k+1,l}(eta;J_t)\}$$

- Have evaluation maps  $\widetilde{evb_j} : \widetilde{\mathcal{M}}_{k+1,l}(\beta) \to l \times L$ , and  $\widetilde{evi_j}$ .
- Can similarly define  $A^{\infty}$  structure maps  $\widetilde{\mathfrak{m}}_k : A^*([0,1] \times L, \Lambda)^{\otimes k} \to A^*([0,1] \times L, \Lambda).$
- A bounding pair  $(\gamma, b)_J$  is **gauge equivalent** to a bounding pair  $(\gamma', b')_{J'}$  if  $\exists \widetilde{b} \in A^*([0, 1] \times L; \Lambda)$  satisfying  $\widetilde{b}|_{\{0\} \times L} = b$ ,  $\widetilde{b}|_{\{1\} \times L} = b'$  and

$$\sum_{k\geq 0} \widetilde{\mathfrak{m}}_k(\widetilde{b}^{\otimes k}) = c\cdot 1$$

and  $\exists \widetilde{\gamma} \in A^*([0,1] \times X, [0,1] \times L; \Lambda)$  with  $d\widetilde{\gamma} = 0$  and  $\widetilde{\gamma}|_{\{0\} \times X} = \gamma$ ,  $\widetilde{\gamma}|_{\{1\} \times X} = \gamma'$ 

- We first show  $\rho$  is well defined: assuming n > 0, if  $(\gamma, b) \sim (\gamma', b')$ , then  $[\gamma] = [\gamma']$  and  $\int_{L} b = \int_{L'} b'$ .
- Proof of well-definedness: By definition of gauge equivalence, there exist  $\widetilde{\gamma} \in A^*([0,1] \times X, [0,1] \times L; \Lambda)$  with  $d\widetilde{\gamma} = 0$  and  $\widetilde{\gamma}|_{\{0\} \times X} = \gamma$ ,  $\widetilde{\gamma}|_{\{1\} \times X} = \gamma'$ . By a generalized Stokes' theorem on orbifolds with corners,  $[\gamma] = [\gamma']$ . We also have  $\widetilde{b} \in A^*([0,1] \times L; \Lambda)$  with  $\widetilde{b}|_{\{0\} \times L} = b$ ,  $\widetilde{b}|_{\{1\} \times L} = b'$ , and satisfying the Maurer-Cartan equation.

• We have

$$\begin{split} \int_{L} b' - \int_{L} b &= \int_{\partial(I \times L)} \tilde{b} = \int_{I \times L} d\tilde{b} \\ &= \int_{I \times L} (\tilde{c} \cdot 1 - \sum_{(k,l,\beta) \neq (1,0,\beta_0)} \tilde{q}_{k,l} (\tilde{b}^k; \tilde{\gamma}^k))_{n+1} \quad (\text{Maurer-Cartan}) \\ &= \int_{I \times L} (\tilde{c} \cdot 1)_{n+1} - (\tilde{q}_{2,0} (\tilde{b}^2) + \tilde{q}_{0,1} (\gamma))_{n+1} \quad (\text{Top Degree}) \\ &= \int_{I \times L} (\tilde{c} \cdot 1)_{n+1} - (\tilde{b} \wedge \tilde{b} - \tilde{\gamma}|_{I \times L})_{n+1} \end{split}$$

This equals zero since deg *b̃* = 1 and *γ̃* ∈ A\*(I × X, I × L), d*γ̃* = 0. Since *c̃* ∈ A\*([0, 1]; Λ) and n > 0, (*c̃*)<sub>n+1</sub> = 0. Thus, the map ρ is well defined.

- To prove classification or bijectivity of the map ρ, we define obstruction classes motivated by [FOOO]. The vanishing of obstruction classes signifies the existence of a bounding cochain.
- There exists a natural valuation  $\nu: R := \Lambda[[s, t_0, \dots, t_N]] \to \mathbb{R}_{\geq 0}$  defined by

$$\nu(\sum_{j=0}^{\infty} a_j T^{\beta_j} s^{k_j} \prod_{a=0}^{N} t_a^{l_{aj}}) := \inf_{j, a_j \neq 0} (\omega(\beta_j) + k_j + \sum_{a=0}^{N} l_{aj})$$

Denote F<sup>E</sup>R the filtration on R defined by λ ∈ F<sup>E</sup>R ⇔ ν(λ) > E. The filtration defines a topology on R: a sequence {x<sub>i</sub>} converges in R if ∀E ∈ ℝ<sub>≥0</sub>, ∃N such that for ∀n ≥ N, a<sub>n</sub> ∈ F<sup>E</sup>R.

• Given  $b \in C := A^*(L) \otimes \Lambda[[s, t_0, \dots, t_N]]$ , write  $b = \sum_{j=0}^{\infty} \lambda_j b_j$  with  $b_j \in A^*(L), \lambda_j = T^{\beta_j} s^{k_j} \prod_{a=0}^{N} t_a^{l_{aj}}$ . We can order the  $\{\lambda_j\}_{j=0}^{\infty}$  such that if  $i \leq j$ , then  $\nu(\lambda_i) \leq \nu(\lambda_j)$ .

- Given  $b \in C := A^*(L) \otimes \Lambda[[s, t_0, \dots, t_N]]$ , write  $b = \sum_{j=0}^{\infty} \lambda_j b_j$  with  $b_j \in A^*(L), \lambda_j = T^{\beta_j} s^{k_j} \prod_{a=0}^{N} t_a^{l_{aj}}$ . We can order the  $\{\lambda_j\}_{j=0}^{\infty}$  such that if  $i \leq j$ , then  $\nu(\lambda_i) \leq \nu(\lambda_j)$ .
- Define the index  $\kappa_I$  to be the largest index of  $\{\lambda_j\}_{j=0}^{\infty}$  such that  $\nu(\lambda_{\kappa_I}) = E_I$ .

- Given  $b \in C := A^*(L) \otimes \Lambda[[s, t_0, \dots, t_N]]$ , write  $b = \sum_{j=0}^{\infty} \lambda_j b_j$  with  $b_j \in A^*(L), \lambda_j = T^{\beta_j} s^{k_j} \prod_{a=0}^{N} t_a^{l_{aj}}$ . We can order the  $\{\lambda_j\}_{j=0}^{\infty}$  such that if  $i \leq j$ , then  $\nu(\lambda_i) \leq \nu(\lambda_j)$ .
- Define the index  $\kappa_l$  to be the largest index of  $\{\lambda_j\}_{j=0}^{\infty}$  such that  $\nu(\lambda_{\kappa_l}) = E_l$ .
- Suppose we have a cochain b<sub>(l)</sub> ∈ C that solves the Maurer-Cartan equation modulo terms in F<sup>E<sub>l</sub></sup>C, i.e.

$$\mathfrak{m}^{\gamma}(e^{b_{(l)}}) \equiv c_{(l)} \cdot 1 \pmod{F^{E_l}C}$$

- Given  $b \in C := A^*(L) \otimes \Lambda[[s, t_0, \dots, t_N]]$ , write  $b = \sum_{j=0}^{\infty} \lambda_j b_j$  with  $b_j \in A^*(L), \lambda_j = T^{\beta_j} s^{k_j} \prod_{a=0}^{N} t_a^{l_{aj}}$ . We can order the  $\{\lambda_j\}_{j=0}^{\infty}$  such that if  $i \leq j$ , then  $\nu(\lambda_i) \leq \nu(\lambda_j)$ .
- Define the index  $\kappa_l$  to be the largest index of  $\{\lambda_j\}_{j=0}^{\infty}$  such that  $\nu(\lambda_{\kappa_l}) = E_l$ .
- Suppose we have a cochain b<sub>(l)</sub> ∈ C that solves the Maurer-Cartan equation modulo terms in F<sup>E<sub>l</sub></sup>C, i.e.

$$\mathfrak{m}^{\gamma}(e^{b_{(l)}}) \equiv c_{(l)} \cdot 1 \pmod{F^{E_l}C}$$

• Define the obstruction classes  $o_j \in A^*(L)$  for  $j = \kappa_l + 1 \dots, \kappa_{l+1}$  to be,

$$o_j := ext{coefficient of } \lambda_j ext{ in } \mathfrak{m}^\gamma(e^{b_{(l)}})$$

- Given  $b \in C := A^*(L) \otimes \Lambda[[s, t_0, \dots, t_N]]$ , write  $b = \sum_{j=0}^{\infty} \lambda_j b_j$  with  $b_j \in A^*(L), \lambda_j = T^{\beta_j} s^{k_j} \prod_{a=0}^{N} t_a^{l_{aj}}$ . We can order the  $\{\lambda_j\}_{j=0}^{\infty}$  such that if  $i \leq j$ , then  $\nu(\lambda_i) \leq \nu(\lambda_j)$ .
- Define the index  $\kappa_l$  to be the largest index of  $\{\lambda_j\}_{j=0}^{\infty}$  such that  $\nu(\lambda_{\kappa_l}) = E_l$ .
- Suppose we have a cochain b<sub>(l)</sub> ∈ C that solves the Maurer-Cartan equation modulo terms in F<sup>E<sub>l</sub></sup>C, i.e.

$$\mathfrak{m}^{\gamma}(e^{b_{(l)}}) \equiv c_{(l)} \cdot 1 \pmod{F^{E_l}C}$$

• Define the obstruction classes  $o_j \in A^*(L)$  for  $j = \kappa_l + 1 \dots, \kappa_{l+1}$  to be,

$$o_j:=\mathsf{coefficient}$$
 of  $\lambda_j$  in  $\mathfrak{m}^\gamma(e^{m{b}_{(I)}})$ 

• The  $o_j$  are closed and satisfy deg  $o_j = 2 - \text{deg } \lambda_j$ .

We prove the following proposition, which shows ρ is surjective: assuming H\*(L; ℝ) ≅ H\*(S<sup>n</sup>; ℝ), then for any closed γ ∈ (I<sub>Q</sub>D)<sub>2</sub> and any a ∈ (I<sub>R</sub>)<sub>1-n</sub>, there exists a bounding cochain b for m<sup>γ</sup> such that ∫<sub>I</sub> b = a.

- We prove the following proposition, which shows ρ is surjective: assuming H\*(L; ℝ) ≅ H\*(S<sup>n</sup>; ℝ), then for any closed γ ∈ (I<sub>Q</sub>D)<sub>2</sub> and any a ∈ (I<sub>R</sub>)<sub>1-n</sub>, there exists a bounding cochain b for m<sup>γ</sup> such that ∫<sub>I</sub> b = a.
- Idea of proof: the assumption that *L* is a cohomology sphere ensures the obstruction classes exact. We can then inductively build a bounding cochain that satisfies the Maurer-Cartan equation modulo *F<sup>E<sub>l</sub></sup>C*. Taking the limit as *l* → ∞, we get an honest bounding cochain satisfying the Maurer-Cartan equation.

Proof: For the base case, take a representative of the Poincaré dual of a point b<sub>0</sub> ∈ A<sup>n</sup>(L). Set b<sub>(0)</sub> := a ⋅ b<sub>0</sub> ∈ I<sub>R</sub>C. By the energy zero property, m<sup>γ</sup>(e<sup>b<sub>(0)</sub>) ≡ 0 = c<sub>(0)</sub> ⋅ 1 (mod F<sup>E<sub>0</sub></sup>C) where c<sub>(0)</sub> := 0. Clearly, ∫<sub>L</sub> b<sub>(0)</sub> = a, db<sub>(0)</sub> = 0.
</sup>

- Proof: For the base case, take a representative of the Poincaré dual of a point  $b_0 \in A^n(L)$ . Set  $b_{(0)} := a \cdot b_0 \in \mathcal{I}_R C$ . By the energy zero property,  $\mathfrak{m}^{\gamma}(e^{b_{(0)}}) \equiv 0 = c_{(0)} \cdot 1 \pmod{F^{E_0}C}$  where  $c_{(0)} := 0$ . Clearly,  $\int_L b_{(0)} = a, db_{(0)} = 0$ .
- By induction, suppose we have  $b_{(I)} \in C$  with deg<sub>C</sub>  $b_{(I)} = 1$ , and

$$\int_L b_{(I)} = a, \quad \mathfrak{m}^\gamma(e^{b_{(I)}}) \equiv c_{(I)} \cdot 1 \pmod{F^{E_0}C}$$

- Proof: For the base case, take a representative of the Poincaré dual of a point b<sub>0</sub> ∈ A<sup>n</sup>(L). Set b<sub>(0)</sub> := a ⋅ b<sub>0</sub> ∈ I<sub>R</sub>C. By the energy zero property, m<sup>γ</sup>(e<sup>b<sub>(0)</sub>) ≡ 0 = c<sub>(0)</sub> ⋅ 1 (mod F<sup>E<sub>0</sub></sup>C) where c<sub>(0)</sub> := 0. Clearly, ∫<sub>L</sub> b<sub>(0)</sub> = a, db<sub>(0)</sub> = 0.
  </sup>
- By induction, suppose we have  $b_{(I)} \in C$  with deg<sub>C</sub>  $b_{(I)} = 1$ , and

$$\int_{L} b_{(l)} = a, \quad \mathfrak{m}^{\gamma}(e^{b_{(l)}}) \equiv c_{(l)} \cdot 1 \pmod{F^{E_0}C}$$

• Take the obstruction chains  $o_j$  of  $b_{(I)}$ . We can choose forms  $b_j \in A^{1-\deg \lambda_j}(L)$  such that  $(-1)^{\deg \lambda_j} db_j = -o_j$  for all  $j \in \{\kappa_l + 1, \ldots, \kappa_{l+1}\}$  with  $\deg \lambda_j \neq 2$ . If  $\deg \lambda_j = 2 - n$ , then  $o_j = 0$  since  $\deg o_j = 2 - \deg \lambda_j$ . Hence we can take  $b_j = 0$ . If  $2 - n < \deg \lambda_j < 2$ , then  $0 < |o_j| < n$ , so the assumption that L is a **cohomology sphere** shows existence of the  $b_j$ . For other possible values of  $\deg \lambda_j$ ,  $o_j = 0$  by degree considerations, so we can again take  $b_j = 0$ .

• The energy zero property gives us,

$$b_{(l+1)} \coloneqq b_{(l)} + \sum_{\kappa_l+1 \leq j \leq \kappa_{l+1}, \deg \lambda_j 
eq 2} \lambda_j b_j$$

which satisfies  $\mathfrak{m}^{\gamma}(e^{b_{(l+1)}}) \equiv c_{(l+1)} \cdot 1 \pmod{F^{E_{l+1}C}}$  and  $\int_L b_{l+1} = a$ .

• The energy zero property gives us,

$$b_{(l+1)} := b_{(l)} + \sum_{\kappa_l+1 \leq j \leq \kappa_{l+1}, \deg \lambda_j 
eq 2} \lambda_j b_j$$

which satisfies  $\mathfrak{m}^{\gamma}(e^{b_{(l+1)}}) \equiv c_{(l+1)} \cdot 1 \pmod{F^{E_{l+1}C}}$  and  $\int_L b_{l+1} = a$ .

• We get a sequence  $\{b_{(l)}\}_{l=0}^{\infty}$  that converges in the filtration topology. Thus,  $b := \lim_{l \to 0} b_{(l)}$  is our desired bounding cochain with  $\mathfrak{m}^{\gamma}(e^b) = c \cdot 1$  and  $\int_{L} b = a$ .

• The energy zero property gives us,

$$b_{(l+1)} := b_{(l)} + \sum_{\kappa_l + 1 \leq j \leq \kappa_{l+1}, \deg \lambda_j 
eq 2} \lambda_j b_j$$

which satisfies  $\mathfrak{m}^{\gamma}(e^{b_{(l+1)}}) \equiv c_{(l+1)} \cdot 1 \pmod{F^{E_{l+1}C}}$  and  $\int_L b_{l+1} = a$ .

- We get a sequence  $\{b_{(I)}\}_{I=0}^{\infty}$  that converges in the filtration topology. Thus,  $b := \lim_{I \to I} b_{(I)}$  is our desired bounding cochain with  $\mathfrak{m}^{\gamma}(e^b) = c \cdot 1$  and  $\int_{L} b = a$ .
- Injectivity of  $\rho$  relies on a similar obstruction class argument.

- It is enough to prove the axioms for the basis elements as input. Without loss of generality, take Γ<sub>0</sub> = 1, Γ<sub>1</sub>,..., Γ<sub>N</sub> ∈ H<sub>2</sub>(M, L; ℝ) as a basis.
- (Proof of degree axiom): The superpotential Ω(γ, b) is of degree 3 n. The partial derivatives ∂<sub>t<sub>i1</sub></sub>...∂<sub>t<sub>ij</sub></sub>∂<sup>k</sup><sub>s</sub> decrease the degree by k deg s + ∑<sup>l</sup><sub>j=1</sub> 2 |Γ<sub>j</sub>|. Taking out T<sup>β</sup> decreases the degree by μ(β). When setting the variables s = t<sub>j</sub> = 0, only the degree zero term remains. Thus OGW<sub>β,k</sub> ≠ 0 only if (3 n) k(1 n) (∑<sup>l</sup><sub>j=1</sub> 2 |Γ<sub>j</sub>|) μ(β) = 0.

• (Proof of fundamental class axiom): (We can assume  $\partial_{t_0} b = 0$ ) We have

$$egin{aligned} &(-1)^n\partial_{t_0}\Omega = \sum_{k,l\geq 0}rac{1}{l!(k+1)}\langle\partial_{t_0}\mathfrak{q}_{k,l}(b^{\otimes k};\gamma^{\otimes l}),b
angle + \partial_{t_0}\mathfrak{m}_{-1}^\gamma \ &= \sum_{k,l\geq 0}rac{1}{(l-1)!(k+1)}\langle\mathfrak{q}_{k,l}(b^k;1\otimes\gamma^{l-1}),b
angle + 0 \ &= \langle\mathfrak{q}_{0,1}(;1),b
angle \ &= (-1)^{n+1}T^{eta_0}\int_L b := (-1)^{n+1}T^{eta_0}s \end{aligned}$$

Thus, ∂<sub>J</sub>∂<sub>t<sub>0</sub></sub>Ω|<sub>s=t<sub>j</sub>=0</sub> ≠ 0 unless J = {s}, in which case it is −T<sup>β<sub>0</sub></sup>. By definition, this means OGW<sub>β0,1</sub>(1) = −1, and 0 otherwise.

 (Proof of symplectic deformation invariance): Define Λ<sup>J</sup> to be the J-dependent Novikov ring,

$$\Lambda^{J} := \{\sum_{i=0}^{\infty} a_{i} T^{\beta_{i}} \in \Lambda | \forall i, \exists \text{ J-holomorphic disc representing } \beta_{i} \}$$

- -

 (Proof of symplectic deformation invariance): Define Λ<sup>J</sup> to be the J-dependent Novikov ring,

$$\Lambda^{J} := \{\sum_{i=0}^{\infty} a_{i} T^{\beta_{i}} \in \Lambda | \forall i, \exists \text{ J-holomorphic disc representing } \beta_{i} \}$$

Take a neighborhood U of ω in which J is ω'-tame for all ω' ∈ U. We can similarly define A<sup>∞</sup> operations m<sup>J</sup><sub>γ</sub> that use the J-dependent Novikov ring. Furthermore, we can find a bounding pair (γ, b) such that b is a bounding cochain for m<sup>J</sup><sub>γ</sub>, and ([γ], ∫<sub>L</sub> b) = (Γ, s).

- -

 (Proof of symplectic deformation invariance): Define Λ<sup>J</sup> to be the J-dependent Novikov ring,

$$\Lambda^{J} := \{\sum_{i=0}^{\infty} a_{i} T^{\beta_{i}} \in \Lambda | \forall i, \exists \text{ J-holomorphic disc representing } \beta_{i} \}$$

- Take a neighborhood U of ω in which J is ω'-tame for all ω' ∈ U. We can similarly define A<sup>∞</sup> operations m<sup>J</sup><sub>γ</sub> that use the J-dependent Novikov ring. Furthermore, we can find a bounding pair (γ, b) such that b is a bounding cochain for m<sup>J</sup><sub>γ</sub>, and ([γ], ∫<sub>L</sub> b) = (Γ, s).
- The bounding cochain b depends on ω' only through Λ<sup>J</sup>, which is the same for all ω' ∈ U and J. Hence b is a bounding cochain for m<sup>J</sup><sub>γ</sub> for all ω' ∈ U.

 (Proof of symplectic deformation invariance): Define Λ<sup>J</sup> to be the J-dependent Novikov ring,

$$\Lambda^{J} := \{\sum_{i=0}^{\infty} a_{i} T^{\beta_{i}} \in \Lambda | \forall i, \exists \text{ J-holomorphic disc representing } \beta_{i} \}$$

- Take a neighborhood U of ω in which J is ω'-tame for all ω' ∈ U. We can similarly define A<sup>∞</sup> operations m<sup>J</sup><sub>γ</sub> that use the J-dependent Novikov ring. Furthermore, we can find a bounding pair (γ, b) such that b is a bounding cochain for m<sup>J</sup><sub>γ</sub>, and ([γ], ∫<sub>L</sub> b) = (Γ, s).
- The bounding cochain b depends on ω' only through Λ<sup>J</sup>, which is the same for all ω' ∈ U and J. Hence b is a bounding cochain for m<sup>J</sup><sub>γ</sub> for all ω' ∈ U.
- But b is a bounding cochain for the {m<sup>γ</sup><sub>k</sub>} in defining OGWs for all ω' ∈ U, since m<sup>γ</sup><sub>k</sub> only considers classes that can be represented by J-holomorphic dics. But this implies the superpotential Ω(γ, b) and hence OGW<sub>β,k</sub> is constant for all ω' ∈ U.

- S-T showed that when there's an anti-symplectic involution, their definition of OGWs generalize Welshinger's and Georgieva's invariants.
- In a subsequent paper, S-T show their superpotential satisfy open WDVV equations.

#### Thanks!